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Chapter 1

Introduction

The purpose of machine learning is to design accurate prediction algorithms based on
available training data. This data can be seen as experience from which one can learn
by example: the previous instances have to be taken into account when making decisions.
The process is different from memory-based systems which only recognize past instances.
In learning, the purpose is to determine the model associated with the data and be able
to apply it on unseen instances. In most cases, once the modeling step is performed, the
initial data can be discarded, and the model can predict outcomes for new data arriving in
the system. In contrast to memory-based systems, this implies that machine learning has
generalization capacities.

Learning algorithms are successfully used in a variety of applications, including:

• Computer vision (e.g. image segmentation, face detection, object recognition);

• Signal processing (e.g. speech recognition and synthesis, voice identification);

• Information retrieval (e.g. search engines, recommender systems);

• Unassisted vehicles (e.g. robots, drones, self-driven cars);

• Computational linguistics;

• Computational biology and genetics;

• Medical diagnosis.

This list is not a comprehensive one, and new applications for learning algorithms are
designed every day.

Data can be made available to the algorithm in different forms. Feature vectors are often
used to contain categorical or numerical information, like the location of a house, its
price, its surface and so on. Structured data is used to represent information that cannot
be directly stored in the previous form, such as strings (e.g. text documents), trees (e.g.
XML content) or graphs (e.g. social networks). Another type of structured data present
in numerous applications are time series, which follow the evolution of a process across
time (e.g. stock values, patient vital signs or weather information). When presented with
any of the previous types of data (or a mix of them), the algorithm can be asked to
perform a certain number of learning tasks. In supervised learning, the data comes with
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Figure 1.1: The supervised machine learning workflow. The question of the generalization
capacity can be asked at two levels: the metric and the predictor using it.

a label associated to each instance. The algorithm must learn to predict these labels for
unseen examples. When the label comes from a discrete set of values (e.g. the gender of
a person), the task is called classification. Conversely, when labels are continuous (e.g.
prices), the task to be performed is regression. We will mainly focus on supervised tasks
in this document. Unsupervised learning covers the case where no label information is
available for the data. In this context, the algorithm is asked to perform a task for which
label information is not necessary. For example, clustering tries to find an inherent pattern
in the data which allows to divide examples into groups named clusters. Semi-supervised
learning covers similar tasks to the supervised setting, but is able to additionally integrate
unlabeled samples.

The performance of a learning algorithm is strongly related to the quantity and quality of
data available. As in the case of all algorithms, performance measures for learning methods
include time and space complexity. While computational efficiency is a significant concern
in machine learning, more specific measures allow evaluating algorithms from a learning
perspective. The most important of these is the quality of the prediction. An additional
particular measure is sample complexity, which indicates the quantity of data required by
an algorithm to learn to solve a certain task. More precisely, theoretical guarantees can be
provided for the performance of a learning algorithm with respect to the quantity of data
available and a notion of complexity of the chosen model. These types of guarantees can
be derived using methods from statistical learning theory.

Most machine learning algorithms are brought to compare data instances, either for
constructing the model or making predictions. Comparisons are performed using a notion
of metric that gives a measure of resemblance between examples. This is true for supervised
methods, like k-nearest neighbors or support vector machines, as well as for unsupervised
ones, such as K-means. However, choosing an adapted metric can prove to be a difficult
task, and the performance of the algorithm strongly depends on it. One hopes that the
measure discriminates well the data for the given task (e.g. for classification, recognizing
instances of the same label as similar). Moreover, standard metrics, such as the Euclidean
distance, do not have the capacity to adapt to a task or to incorporate semantic constraints,
thus sometimes missing the relevant information.
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Metric learning aims at solving exactly this problem by automatically learning custom
metrics from data. This step is performed prior to applying another machine learning
algorithm using the learned metric to solve a specific task. Learning metrics for the purpose
of classification is the main subject that we address in this thesis. Metric learning can be
seen as part of a larger topic termed representation learning : under the new metric, the
representation used for the data changes. Representation learning also includes fields such
as feature learning, deep learning, kernel learning and many others. Metric learning has
received a lot of attention over the past fifteen years, especially for the supervised setting.
Most methods learn the parameters of a Mahalanobis distance under constraints induced by
the data, which is equivalent to changing the representation of the instances under a linear
transformation. In the supervised case, the learned metric has the objective to represent
the instances with the same or close (respectively different) labels as similar (respectively
dissimilar). State of the art methods for feature vectors are more scalable and efficient
in computation than previous approaches. On the other hand, metric learning for time
series applications has received scarce attention, most likely because of the more complex
structure of the data. Time series coming from real applications usually have different
lengths, sampling rates and phases. For this reason, in order to compare two time series,
one must first align them. Roughly speaking, this implies finding all the correspondences
between time moments. Dynamic time warping (DTW) is the most well-known method for
providing the optimal alignment, which is based on a cost matrix. Metric learning for time
series usually aims at optimizing this cost under constraints deducted from the examples.

The current advancement of the metric learning field suffers from a few non-negligible
limitations. The most important is probably the lack of theoretical analyses for most
existing methods. To be more precise, one would want to evaluate the generalization
capacity associated to learning a metric. For the particular case of metric learning, this
notion can be declined under two aspects (see Figure 1.1). First, the metric should be
consistent with the data, that is it should be able to generalize well outside the training
data, on unseen examples from the same distribution. This type of guarantee has only been
provided for a small number of methods. Second, the learned metric should be related to
the algorithm that is using it, improving its performance with respect to standard metrics.
For example, learning a metric from local constraints for a local classification rule might
not perform well when used with a global linear classifier. This second type of guarantee is
also rare in the field, and, even though some methods improve a criterion related to the
classifier, this link is not formally established. In practice, the learned metric is plugged in
the classifier in hope of making if better. The theory of (ε, γ, τ)-good similarity functions
has been one of the first results trying to relate the properties of a similarity function to
the performance that can be expected of it in classification. We describe this framework
in detail later in the thesis, as our contributions make use of it. A second limitation in
metric learning comes from the fact that most methods work with metrics that enforce
distance properties. Satisfying this type of constraints can be expensive even when using
modern numerical optimization techniques, which increases the overhead of performing
a metric learning step. This limitation joint with the lack of guarantees for performance
amelioration implies that the effort spent in metric learning might actually result in an
inadequate metric.
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In this thesis, we aim to address the previously mentioned limitations. All our contributions
are based on learning similarity functions, a different family of metrics which are less
constraint than distances and constitute a promising, but less explored avenue for research.
We also derive generalization guarantees for the learned metric and the associated classifier
for all the methods we propose. First, we introduce a general framework for performing
similarity and linear classifier learning simultaneously. This setting is designed for feature
vectors and works for a wide range of similarity functions. Moreover, the approach is
semi-supervised, which allows it to leverage unlabeled examples in order to improve
performance. Our following contribution allows us to tackle the problem of metric learning
for multivariate time series. We propose to learn a bilinear similarity function to be used
for linear classification. The similarity uses the optimal alignments and allows to better
reweigh the features.

Context of this work The work for this thesis was performed in machine learning
teams from two establishments: the Data Intelligence group of Laboratoire Hubert Curien
UMR CNRS 5516, part of University of Saint-Étienne and University of Lyon, and the
Data Analysis, Modeling and Machine Learning (AMA) group of Laboratoire Informatique
de Grenoble, part of Grenoble Alps University. Funding for this project was provided by a
grant from Région Rhône-Alpes.

Outline of the thesis This dissertation is organized as follows.

• Chapter 2 introduces the notions related to statistical machine learning that are
necessary for the rest of this document. We begin with a formal presentation of
supervised learning, then give some examples of classic learning algorithms, followed
by the learning theory frameworks for deriving generalization guarantees.

• Chapter 3 is dedicated to metrics in general, and metric learning in particular. After
presenting a number of standard metrics for feature vectors and time series, we
provide a comprehensive survey of (semi-)supervised metric learning for these types
of data. This chapter explains in more detail the limitations that have determined
the direction of our contributions.

• Chapter 4 presents our contributions on metric learning for feature vectors. We
introduce a general framework called JSL (Joint Similarity Learning) for learning
a similarity function and a global linear classifier simultaneously. JSL is capable
of integrating unlabeled information in the form of landmarks based on which
global constraints are generated. This property allows our framework to adapt to
the particular setting in which only a small amount of labeled data is available.
The formulation optimizes the (ε, γ, τ)-goodness of the similarity, which ensures its
performance in classification. JSL is convex and can be solved efficiently under
mild constraints over the choice of the similarity function. We derive theoretical
guarantees for JSL using two different frameworks: the algorithmic robustness and
the uniform convergence using Rademacher complexity. The experiments compare
JSL to a large range of state of the art methods and prove its efficiency.

4
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• Chapter 5 gathers our contributions on metric learning for temporal data by intro-
ducing SLTS (Similarity Learning for Time Series). We propose to learn a bilinear
similarity function for multivariate time series based on the optimal alignment. The
learned similarity is to be used in a classification task to determine a linear separator.
The problem we solve is convex and easy to solve. Making use of the uniform stability
framework, we provide the first theoretical guarantees in the form of a consistency
bound for the learned similarity. Moreover, improving the (ε, γ, τ)-goodness of the
metric provides additional guarantees concerning its performance for linear classifica-
tion. The experimental study shows that the proposed approach is efficient, while
yielding sparse classifiers.

• Chapter 6 concludes our work and discusses avenues for possible future work.

Notation Table 1.1 explains the notations used throughout this thesis.

Notation Description

R Set of real numbers
Rd Set of d-dimensional real-valued vectors
Rd×d

′ Set of d× d′ real-valued matrices
Sd+ Cone of symmetric PSD d× d real-valued matrices
S An arbitrary set
|S| The cardinality of S
Sn A set of n elements from S
X Input space
Y Output space
z = (x, y) ∈ X × Y A labeled instance
x An arbitrary vector
xi The ith component of x
M An arbitrary matrix
I The identity matrix
Mi,j Entry at row i and column j of matrix M
[·]+ The hinge function
|| · || Arbitrary norm
|| · ||p Lp norm
A An arbitrary time series
x ∼ P x is drawn i.i.d. from probability distribution P
Pr[·] Probability of an event
E[·] The expectation of a random variable

Table 1.1: Summary of notation.
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Chapter 2

Fundamentals of Theoretical
Learning

Chapter abstract

This chapter introduces the most common learning setups, focusing on the standard
setting for supervised learning, as well as some fundamental notions from statistical
learning theory. We present the main analytical frameworks and tools for deriving
generalization guarantees. We begin with the Probably Approximately Correct (PAC)
learning model, then present multiple frameworks for deriving PAC generalization
bounds: uniform convergence with different measures of complexity, uniform stability
and algorithmic robustness.

2.1 Introduction

The practical objective of machine learning is to make correct predictions for items that
were not seen before in an efficient and robust way. This is done based on a model inferred
from available data instances.

A classic setting for this type of problem is supervised learning (Bishop, 2006). Its
particularity is that the available data for determining the model is labeled, i.e. the items
are annotated with target values similar to those which the algorithm should predict.
When the annotation comes from a set of discrete categories, and the purpose is to assign
a category to each new item, the problem is called classification. In contrast, if the output
is a continuous, usually real-valued variable, the learning task is called regression.

A different setting is unsupervised learning, where the training data is a set of items
with no target annotation. Here, the goal can be to discover a pattern that allows to
aggregate the data in similar groups in the case of clustering (Kaufman & Rousseeuw,
1990), to determine the distribution of the data for density estimation (Silverman, 1986),
or to perform data visualization in two or three dimensions by projecting it to such a low
dimensional space (Post et al., 2002).

Semi-supervised learning (Chapelle et al., 2006) covers the same tasks as the supervised
setting when only part of the training data is annotated. The purpose is to extract
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additional information (typically, about their underlying statistical distribution) from
the unlabeled data in order to perform better than based only on the labeled sample.
This is usually done in a transductive setting, by label propagating onto close unlabeled
examples (Vapnik, 1998), or by integrating the structure of unlabeled neighborhoods
through graph nodes adjacency information (Zhu, 2005).

Other learning paradigms that are not in the scope of this document include transfer
learning (Pan & Yang, 2010), which aims at better solving one learning problem by using
information from another related problem, and reinforcement learning (Sutton & Barto,
1998), where the algorithm takes sequential actions to maximize a notion of reward, without
being presented with an explicit access to correct results.

This dissertation focuses on (semi-)supervised learning, more precisely classification, which
we introduce formally in the following section.

2.2 Supervised Learning

In a supervised setting, the learning algorithm has access to a labeled training set coming
from a fixed but unknown distribution, used to create a model with prediction capacities.
Let us define these notions formally.

Domain set An arbitrary set X . Usually, domain points are vectors of features coming
from X ⊆ Rd and are referred to as instances. The features or the characteristics of
the data have to be informative to guide the learning algorithm effectively. The choice
of features is left to the user and reflects his prior knowledge about the task, but a
lot of research effort has been put into making this selection automatically (Guyon,
2003).

Label set Also known as annotations or target values, these are the feedback provided
to the learning algorithm. In the classification setting, Y represents the set of all
possible labels. For the purpose of this discussion, and without loss of generality, we
will focus on binary labels, usually {−1, 1}.

Training data A training sample S is a set {zi = (xi, yi)}ni=1 of size n independent
instances, identically distributed (i.i.d.) according to an unknown distribution P
over the space of instances and labels Z = X × Y. Such labeled examples are often
called training set and are the data based on which the algorithm learns.

Output We assume there exists a correct labeling function f : X → Y for which f(x) = y

for all (x, y) drawn from P . The labeling function is unknown to the algorithm.
Following the learning process, the algorithm provides a function h : X → Y ′ coming
from a hypothesis space H that best predicts the behavior of f . For instance, H can
be the family of all linear separators (lines) in a plane. Note that Y ′ can be different
from the label space Y. h is also called a predictor, a hypothesis (or a classifier in
classification), and is used to predict the labels of new instances arriving. We will
denote by hS the model obtained from sample S. In many types of algorithms, the

8
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training data is not necessary anymore once the model is built, and prediction is
done only based on the model h.

Throughout this dissertation, we will consider two types of data: feature vectors coming
from X ⊆ Rd and time series defined as follows.

Definition 2.1 (Time series). A time series is a sequence of values of a quantity obtained
at successive times. The term univariate time series refers to a time series that consists
of single (scalar) observations recorded sequentially over time increments, i.e. X ⊆ R. A
multivariate time series is a time series that records multiple values at each time increment,
i.e. where each time moment is a vector of features, and X ⊆ Rd.

More formally, we can define supervised learning in the following way.

Definition 2.2 (Supervised learning). Supervised learning is the task of finding a modeling
function h : X → Y ′ coming from a hypothesis class H that best predicts the value of y
given x for any (x, y) drawn from P .

As stated before, for a model to be of good quality, its predictions should match the
true labels of the data. When choosing the best hypothesis to fit the data, its adequacy
is measured through the use of a loss function ` : H × Z → R+. Loss functions are
nonnegative and usually take value zero (or close to zero) when the prediction is correct
and higher values otherwise. We define the true risk as the measure over P of the quality
of a hypothesis h under `.

Definition 2.3 (True risk). Given a hypothesis h ∈ H, the true risk R`P of h with respect
to a loss function ` is the expected loss suffered by h on the distribution P :

R`P (h) = Ez∼P [`(h, z)].

The true risk is also known under the names of generalization error, risk or true error, which
we use interchangeably throughout this document. Intuitively, it measures the capacity of
h to make correct predictions for all instances (x, y) ∈ P . The goal of supervised learning
is to find the hypothesis h that obtains the lowest true risk. However, since the risk is an
expected true value and depends on the unknown distribution P , it cannot be computed
directly. The learner should thus minimize a substitute value instead. This is usually the
empirical value of the risk on the available sample S, also known as the empirical risk.

Definition 2.4 (Empirical risk). Given a hypothesis h ∈ H and a sample S = {zi}ni=1 of
size n, the empirical risk (or empirical error) R`S(h) with respect to a loss function ` is the
average loss incurred by the algorithm on the instances of S:

R`S(h) =
1

n

n∑
i=1

`(h, zi).

When using the previous notations, we omit the loss function ` when it is clear from the
context.

9
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The predictor h can take different forms, depending on the family of hypotheses learned:
it can be a vector (usually from Rp), a matrix (from Rp×p

′), the parameters of a neural
network, etc. For binary classification, h generally outputs a scalar in R. In this case, the
most intuitive loss function is the zero-one loss, which tells for each instance if it has been
labeled correctly:

`0/1(h, z) =

{
1 if yh(x) < 0,

0 otherwise.

The product yh(x), which represents the margin, determines if y and h(x) agree in sign;
the error is thus 1 when this is not the case, computing the overall proportion of incorrect
predictions. Even though this loss function is arguably the most adequate for binary
classification, its mathematical properties make it hard to optimize, as we will see later.

In the next section we describe the most well known learning frameworks that use the
current setting to provide a good model.

2.3 Learning Good Hypotheses

In this section, we give an intuition about what makes a good hypothesis and the most
well known methods to learn one.

According to the law of large numbers, the empirical risk asymptotically converges to the
true risk when the size of the sample is infinite. In practice, the quantity of data is always
limited and sometimes rather small. Moreover, choosing a hypothesis class complex enough
(e.g. a high degree polynomial) will allow to perfectly fit the training sample and artificially
minimize the empirical error without also reducing the true risk. The result is a predictor
with low generalization capacity. The phenomenon of conserving an elevated true risk in
spite of a low sample error is called overfitting and is the result of a too complex hypothesis
h or insufficient data available lying in high dimensional space (curse of dimensionality).
In this case, the model is too sensitive to small fluctuations in the training set, adapting to
random noise. This behavior is also called high variance, in reference to the variance of
the obtained estimator.

In contrast to overfitting, underfitting occurs when the algorithm is unable to learn the
relevant relations between data and output. This behavior is usually induced by erroneous
assumptions in the algorithm, i.e. the hypothesis class is not complex enough to justify
the data. For example, a linear classifier will not be able to separate instances that are
not linearly separable w.r.t. to P . This phenomenon is also called high bias, referring to
the fact that the hypothesis is biased towards the assumptions that were made about the
problem, instead of adapting to the sample.

Both elevated variance and bias can prevent a learning algorithm from generalizing well.
The bias–variance trade-off is the problem of finding the best compromise between these
two sources of error: choosing a hypothesis that is just as complex as needed to model the
data. Usually, the higher the variance, the smaller the bias, and vice-versa.

We now proceed to presenting the classic strategies for obtaining good hypotheses: mini-
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mizing the risk via the empirical error.

Empirical Risk Minimization Since the training sample is the only information available
to the algorithm, minimizing the empirical risk on this data seems like a natural way to
obtain a good hypothesis. This strategy is called empirical risk minimization (ERM) and
is formulated as follows:

hS = arg min
h∈H

R`S(h).

In this setting, h is chosen from a restricted class of functionsH set in advance. Handpicking
H can be a difficult task when no prior knowledge about the data is available. Although
ERM can perform well in some cases, recall that the empirical error is often a too optimistic
estimate for true error. There is always a hypothesis h complex enough to reproduce
exactly the labels of the training set, making this framework suffer from overfitting.

In order to avoid overfitting, one should use the most simple hypothesis that explains
the data, which is supported by Occam’s razor principle. Two main approaches can be
envisaged: limiting the class of functions H (through structural risk minimization) or
favoring simple hypotheses over more complex ones (through regularized risk minimization).
We present both these approaches in the following.

Structural Risk Minimization In the case of structural risk minimization (SRM), an
infinite number of hypothesis classes H1 ⊂ H2 ⊂ . . . of increasing sizes and complexities is
considered. The hypothesis is chosen to fit the data while staying as simple as possible.
This is done using a penalty on the complexity of the hypotheses class:

hS = arg min
h∈Hn,n∈N

R`S(h) + penalty(Hn).

The penalty is proportional to a measure of complexity of Hn (e.g. the Vapnik-Chervonenkis
dimension (Vapnik & Chervonenkis, 1971)). This framework can be difficult to implement,
as these measures can be sometimes hard to estimate, even for simple classes of hypotheses.

Regularized Risk Minimization Like SRM, Regularized Risk Minimization (RRM)
builds upon limited spaces of hypotheses. Here, we choose one large hypothesis space
that will be restricted through a penalty function, also known as a regularizer. The
regularizer usually takes the form of a norm on h (‖h‖). The purpose is to reach a trade-off
between best fitting the training data by minimizing the empirical risk, and controlling
the complexity of the hypothesis:

hS = arg min
h∈H

R`S(h) + λ ‖h‖ .

Choosing a type of regularizer for RRM is a delicate task, as each norm type enforces
different characteristics on the model. Moreover, some choices make the problem easier
to solve than others due to their good mathematical properties, e.g. convexity and/or
smoothness. Table 2.1 presents the most common regularizers used in classification and
their characteristics. The choice of the regularizer depends on the properties of the problem.
The L2 norm is easy to optimize and provides control over the values of a vector; the same
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Table 2.1: Common regularizers on vectors (‖x‖) and matrices (‖M‖).
Name Definition Properties

L0 norm
‖x‖0 =

∑
1xi 6=0 + Sparsity

‖M‖0 =
∑

1Mij 6=0 - Non-convex, non-smooth

L1 norm
‖x‖1 =

∑ |xi| + Convex, sparsity
‖M‖1 =

∑ |Mij | - Non-smooth

(Squared) L2 norm ‖x‖22 =
∑
x2
i + Strongly convex, smooth

(Squared) Frobenius norm ‖M‖F =
∑
M2
ij + Strongly convex, smooth

L2,1 norm ‖M‖2,1 =
∑n

j=1 ‖M·,j‖2
+ Convex, group sparsity
- Non-smooth

Nuclear (trace) norm ‖M‖∗ =
∑

singular values
+ Convex, low rank
- Non-smooth

is true for its matrix counterpart, the Frobenius norm. However, when the data contains
a large number of features and potentially not large enough number of examples, one
would consider building a model relying only on a small number of features. The sparsity
inducing norms, e.g. the L1 and L2,1 norms, can be used to achieve this purpose. As
stated before, using regularization limits the complexity of the model to avoid overfitting
and obtain better generalization. We will show in Section 2.7 how controlling the model
through regularization can also help obtain theoretical guarantees on how well the model
will generalize to unseen data.

2.4 Loss Functions

All the strategies presented earlier for finding a good model are based, at least in part,
on minimizing the empirical error under a certain loss function `. Although the zero-one
loss `0/1 seems to be the most adapted for classification, this function is non-convex,
non-smooth, and optimizing it directly is known to be NP-hard (Ben-David et al., 2003).
In practice, we replace it with a surrogate loss that approximates the real loss and has
better computational properties. We remind the reader that a loss function is defined as
` : H ×Z → R+. We now present the most frequently used margin-based surrogates for
binary classification.

• The hinge loss is defined as:

`hinge(h, z) = [1− yh(x)]+ = max(0, 1− yh(x)).

It provides a relatively tight and convex upper bound for the zero-one loss, but it is
not smooth (i.e. not differentiable) for the margin to be satisfied, that is yh(x) = 1.
The hinge loss is closely related to support vector machines (SVMs) (Cortes & Vapnik,
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1995a).

• The logistic loss
`log(h, z) = ln(1 + e−yh(x)).

This function has a similar convergence rate as the hinge loss, being also smooth.
Its main disadvantage is that its value is never zero, even for correctly classified
points, which only incur a small penalty. This property makes logistic loss sensitive
to outliers. The logistic loss is often associated with logistic regression (Knoke &
Burke, 1980).

• The exponential loss, defined as:

`exp(h, z) = e−yh(x),

has similar properties to the logistic loss, but its values are closer to zero for correct
predictions. The exponential loss is mostly known by being used in boosting (Freund
& Schapire, 1995).

Figure 2.1 depicts these surrogate loss functions, along with the zero-one loss. Note that
all these surrogates give a loss penalty of 1 for yh(x) = 0.
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Figure 2.1: Loss functions for binary classification.

2.5 Standard Classification Algorithms

In this section, we present two classic methods for supervised learning. Support vector
machines (Section 2.5.1) represent one of the most largely used types of classifiers. The
contributions we present in the following chapters are strongly related to this method, as
we will see. The k-NN algorithm presented in Section 2.5.2 is one of the simplest, yet
effective classification rules. It is also one of the methods that has been most explored in
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Figure 2.2: Maximum-margin hyperplane and margins for a binary SVM. Support vectors
are marked with a black outline.

relation to learning metrics, as we will detail in the review of the state of the art methods
for metric learning (Chapter 3).

2.5.1 Support Vector Machines

Support vector machines (SVM) (Vapnik & Chervonenkis, 1964) are supervised methods
adapted to classification and regression. We present here their formulation for binary
classification. The algorithm computes the best separating hyperplane between the classes,
i.e. the one that maximizes their separation. In their initial version, SVMs were only
adapted for finding a linear separator, but this setting was extended to nonlinear decision
functions using the so-called kernel trick (Boser et al., 1992) and projecting data in
high-dimensional or even infinite spaces. For these two settings, the classes need to be
linearly separable respectively in the input space and in the feature (projection) space.
An important advantage of SVMs is that the equation of the separator only depends on
the training points placed exactly on the required margin, also known as support vectors
(Figure 2.2). The notion of margin of a separator with respect to a training set is defined to
be the minimal distance between a point in the training set and the separator. Intuitively,
between two predictors with the same error but different margins, the one with the larger
margin is to be preferred, because it has a higher probability of still separating the training
set under slight perturbations of the instances. SVMs aim at finding the maximum margin
separator. Large margins on the training set translate into better upper bounds on the
true risk.

This constraint is relaxed in the soft margin SVM (Cortes & Vapnik, 1995b), which is able
to compute a large margin separator while allowing for a small proportion of examples to
violate the margin. When the classes are separable, choosing a very small margin in the
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soft margin SVM yields the previous hard margin formulation. Computing the classifier
amounts to solving the following problem:

min
w,b

1

n

n∑
i=1

[1− yi(wxi + b)]+ + λ ‖w‖22 .

The previous formulation learns a linear separator, but, as stated before, SVMs can be used
to learn nonlinear classifiers. For this, we suppose that a kernel function K that measures
similarity between points is given. We now give the definition of a kernel function.

Definition 2.5 (Mercer kernel). A pairwise similarity function K : X × X → R is a
Mercer kernel if it is symmetric and positive semi-definite (PSD), i.e.

n∑
i=1

n∑
j=1

cicjK(xi,xj) ≥ 0

for all finite sequences x1, . . . ,xn ∈ X and c1, . . . , cn ∈ R.

These properties of kernel functions are the basis for the kernel trick and dealing with
classes that are not linearly separable. Positive semi-definiteness implies the existence of a
Hilbert space H to which the data can be projected in order to obtain linear separation.
The projection is done through a nonlinear function, which can be unknown or implicit.

Theorem 2.6 (Mercer theorem (Mercer, 1909)). A kernel K : X × X → R is symmetric
and positive semi-definite if and only if there exists a projection function φ from the instance
space X to a Hilbert space H such that K(·, ·) can be written as a proper inner product:

K(x,x′) = 〈φ(x), φ(x′)〉, ∀x,x′.

We provide some examples of kernels when discussing metrics for feature vectors (see
Section 3.2.1). Given a kernel K, the equation of the separating hyperplane of an SVM is:

w =

n∑
i=1

ciyiφ(xi).

The advantage of the kernel trick is that the mapping function φ can be unknown and is
not necessary for solving the problem. Computing the classifier can be done by learning
the values of the coefficients ci based on the kernel K:

max
ci,i∈{1,...,n}

n∑
i=1

ci −
1

2

n∑
i=1

n∑
j=1

yiyjcicjK(xi,xj)

subject to
n∑
i=1

ciyi = 0

0 ≤ ci ≤
1

2nλ
,∀i ∈ {1, . . . , n}.

Finally, new points x can be classified to the positive (+1) or negative (-1) class using the
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Figure 2.3: Example of 3-NN classifier using the Euclidean distance. Here, the new instance
(cross) will be assigned to the circles class.

Algorithm 2.1 k-nearest neighbors algorithm
Input Training sample S, neighborhood size k, distance d(·, ·), decision rule function c(·),
example to classify x

Output y = the label of x
N ← Neighbors(x,S, k, d) . Determine the k-NN of x from S under distance d
y ← c(N) . Combine the labels of the k neighbors
return y

following prediction rule:

y = sgn

(
n∑
i=1

ciyiK(xi,x) + b

)
.

2.5.2 Nearest Neighbor Classifier

The k nearest neighbors (k-NN) algorithm (Cover & Hart, 1967) is one of the most used
classifiers, due to its simple classification rule. In contrast to SVM, the model is only
approximated locally, without computing its overall explicit form. k-NN does not make
any assumptions about the underlying distribution of the data, thus being non parametric.
This is a lazy algorithm, as the training phase only stores the data, computation being
deferred until the prediction phase. Upon the arrival of a new, unlabeled sample, its label
is predicted as the most frequent class among the k training samples nearest to the point
w.r.t. some distance function (see Algorithm 2.1 and Figure 2.3).

As k-NN uses a rule of majority voting, an important issue is breaking ties among the
voters when two or more classes are majoritary. In a binary setting, choosing an odd
value for k is enough to ensure that ties are not possible. In multiclass setting, a trivial
heuristic is to break ties equally by randomly choosing one of the majority classes. Another
solution is Distance Weighted k-NN (Dudani, 1976), which weighs the neighbors’ votes
proportionally to the inverse of their distance to the example.

Theoretically speaking, the higher k, the better the results of k-NN. However, this only holds
when the number of examples n is infinite. In finite situations, the best choice for the size of
the neighborhood k depends on the data. In general, larger values reduce the effect of noise
but also smooth the decision boundary, making it harder to classify borderline examples.
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Table 2.2: Confusion matrix for classification error.

Predicted value
Positive Negative

True label Positive True positive (tp) False negative (fn)
Negative False positive (fp) True negative (tn)

The right value is usually selected through heuristics of hyperparameter optimization (see
Section 2.6).

A significant drawback of k-NN is the necessity to store the training set during prediction.
As in practice not all the training points are needed for accurate classification, data reduction
can be performed by keeping in the training set only the examples that help correctly
classify all the others. This type of politic is used in variants of k-NN like condensed
nearest neighbor (CNN) (Hart, 1968) and reduced nearest neighbor (RNN) (Gates, 1972).

From a theoretical point of view, the classic k-NN algorithm has the property of its risk
converging to the Bayes error when the number of examples n grows, for all values of k:

RBayesP = E(x,y)∼P

(
1−max

y∈X
Pr(y|x)

)
Pr(x).

In the binary case, when the number of classes is limited to two, the following inequality
holds:

RBayesP ≤ Rk-NNP ≤ 2RBayesP .

The performance of the algorithm is sensitive to the metric through which the neighbors
are computed. For feature vectors, the most common choice of metric is the Euclidean
distance. A good strategy for improving k-NN performance is to learn a custom distance
function from the data through metric learning. As we will see in Chapter 3, an important
number of methods from this field has been dedicated to learning distances that minimize
some form of empirical risk for k-NN classification.

2.6 Algorithms Evaluation

The performance of supervised machine learning algorithms can be compared through
multiple measures. We provide here a discussion over these measures, data partitioning
and parameter selection techniques for classification.

We start by illustrating all possible outcomes of the prediction for binary classification
with respect to the actual target values in Table 2.2. The terms positive and negative refer
to the classifier’s prediction, while the terms true and false refer to whether that prediction
corresponds to the instance label. The scores that are often computed from such a matrix
are the following.
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• Precision is referred to as positive predictive value:

precision =
tn

tn + fp
.

• Recall is referred to as the true positive rate or sensitivity:

recall =
tp

tp + fn
.

• The F-score (or F1 score) is a measure that combines precision and recall as a
harmonic mean:

F-score = 2
precision · recall

precision + recall
.

• Accuracy is a statistical measure of how well a binary classification model correctly
identifies or excludes a condition. That is, the accuracy is the proportion of true
results, both positives and negatives, among the total number of cases examined:

accuracy =
tp + tn

tp + tn + fp + fn
.

• Conversely, we can compute the error rate as:

error = 1− accuracy .

Computing the error rate is the same as evaluating the zero-one loss over the whole sample.
Throughout this dissertation, we will mostly rely on the accuracy and error rates for
classification algorithms.

As we are interested in the performance of a model on unseen data, evaluating the predictive
quality of a model should not be done on the same sample that has been used for learning.
An additional reason is that the error on the training set is usually a too optimistic
estimator of the model performance on unseen data.

To simulate new data from a finite sample, but still have access to the correct output, a
common strategy is to take all available labeled data and randomly split it into training
and test subsets. The training sample is then used by the algorithm to learn the model,
while the test sample serves for evaluating the model and is unaccessible during training.
Other than the parameters learned by a model, the vast majority of methods depend on
additional values (hyperparameters) that cannot be learned from the training set. They
often leverage a trade-off, such as regularization parameters. These hyperparameters need
to be tuned, and an additional independent sample is necessary to choose the best value.
This validation sample is also set aside from the labeled sample, more specifically from the
training set, as hyperparameter tuning is part of the learning process.

The traditional way for hyperparameter optimization is grid search, which exhaustively
evaluates all possible combinations of parameters. For each setting, the model is estimated
on a training set, then evaluated on the validation data. The values that performed the best
are retained, and the model is trained once more, this time on the training set augmented

18



Chapter 2. Fundamentals of Theoretical Learning

with the validation set. The final model performance is computed on the test set.

Since the parameter space is often continuous, the value ranges and discretization steps
have to be set manually for each parameter. When the number of hyperparameters and
values to be explored is large, the size of the state space increases exponentially, making
exhaustive grid search prohibitively expensive. Several alternatives to exhaustive search
have been proposed. In particular, randomly sampling parameters a fixed number of times
is an effective alternative in high-dimensional spaces (Bergstra & Bengio, 2012). Both full
and randomized grid searches are completely parallelizable.

By setting aside data for validation and testing, the size of the training set is diminished.
Generally, the larger the training data the better the classifier, but also the larger the
test data the more accurate the error estimate. In order to better exploit the data, cross-
validation allows to perform multiple rounds of evaluation on different splits of the data.
Multiple heuristics for these splits exist:

• Multiple random splits (subsampling or repeated holdout method).

• K-fold cross-validation: the original sample is randomly partitioned into K mutually
exclusive subsets (the “folds”) of approximately equal size. Two folds are retained
respectively for validation and testing, while the other K − 2 folds are used for
training.

• Leave-one-out cross-validation: on each run, one point is excluded from the training
sample; it is instead used for testing. The learning process is performed once for each
sample.

The price to pay for the previous heuristics comes as an increased time complexity.

2.7 Generalization Guarantees

In the previous sections, we have presented general frameworks for minimizing different
versions of the empirical risk over a given sample. However, the objective of learning is to
obtain a model with good generalization properties for unseen data. Generalization bounds
allow to explicitly relate true risk to the empirical error of a hypothesis and to measure
to which extent the empirical risk deviates from the true value over a sample. When
the difference between the two measures is small, minimizing the (penalized) empirical
error will have a high probability of yielding a model with low true error. This type of
probabilistic bound is referred to as a Probably Approximately Correct (PAC) bound.

Generalization bounds measure the deviation of a random variable from its expected value,
making concentration inequalities highly useful mathematical tools for deriving them. The
most commonly used in practice are Hoeffding’s inequality in the case of sums of variables
and McDiarmid’s inequality for bounded functions. We recall them in Appendix A.

We start by formally defining PAC learning, then move on to presenting three theoretical
frameworks for deriving PAC generalization bounds: uniform convergence, uniform stability
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and algorithmic robustness. These frameworks will be used in Chapters 4 and 5 to derive
generalization guarantees for the proposed learning methods.

2.7.1 PAC Learning

The idea of Probably Approximately Correct (PAC) learning (Valiant, 1984) is that learning
an unknown target concept should be considered successful only if a hypothesis good for
approximating it can be found with high probability. The goal is thus that, with high
probability (probably), the selected model function will have low generalization error
(approximately correct).

The original framework is designed for learning the output of boolean functions. The
instance space is assumed to be the set of all possible assignments of n Boolean variables
X = {0, 1}n, and the probability of each instance is given by the distribution P over X . In
this context, a concept c is a subset of X . A concept class C is a set of concepts over X .
We can define PAC learnability as follows.

Definition 2.7 (PAC-learnable). Given 0 < δ, ε < 1, a concept class C is learnable by a
polynomial time algorithm A if, for any distribution P of samples and any concept c ∈ C,
there exists a polynomial p(·, ·, ·) such that A will produce with probability at least 1− δ a
hypothesis h ∈ C whose error is less than or equal to ε when given at least p(n, 1/δ, 1/ε)
independent random examples.

The PAC framework was the first one to convey the notion of efficiency in learning in a
similar way to complexity theory. The learning process must take place in polynomial time
of the sample size and must use only a reasonable amount of examples, while providing a
good approximation of the target concept. The smallest polynomial p for which learning C
is possible represents the sample complexity of the algorithm A. The model is worst case,
as it defines a unique bound for all target concepts and all distributions over the instance
space.

2.7.2 Uniform Convergence

Uniform convergence analysis (Vapnik & Chervonenkis, 1971) studies the concentration of
empirical quantities towards their expected value. It is one of the most important tools for
deriving PAC generalization bounds. These guarantees hold with high probability (usually
1 − δ, δ > 0) for a given hypothesis class and depend on the size of the training sample.
Through the law of large numbers, large samples provide higher confidence, while small
samples or too large hypothesis classes come with small confidence and an important risk
of overfitting. The classic convergence rate for this type of bounds is O(1/

√
n) in the size

of the sample.

We have previously given the intuition of hypothesis complexity and its link to predictor
performance. In practice, different measures exist for this complexity. In the case of finite
hypothesis spaces, we get the following PAC bound:
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Theorem 2.8 (Uniform convergence bound for finite hypothesis spaces). Let S be a sample
of size n drawn i.i.d. from a distribution P , H a finite hypothesis space of cardinality |H|
and δ > 0. Then, with probability 1− δ over the sample S, we have:

R`P (h) ≤ R`S(h) +

√
ln |H|+ ln (1/δ)

2n
.

In the case of a continuous hypothesis space, |H| is no longer a finite value, thus the
previous bound is no longer useful. Instead, we need measures that are capable of evaluating
the complexity of a hypothesis space without considering its cardinality. These include the
VC dimension (Vapnik & Chervonenkis, 1971), the fat-shattering dimension (Kearns &
Schapire, 1994), the maximum discrepancy (Bartlett et al., 2002), the Rademacher complex-
ity (Bartlett & Mendelson, 2003; Koltchinskii, 2001) and the Gaussian complexity (Bartlett
& Mendelson, 2003).

2.7.2.1 Vapnik-Chervonenkis Dimension

The Vapnik-Chervonenkis (VC) dimension (Vapnik & Chervonenkis, 1971) is one of the
most important results in statistical learning theory. It has allowed to extent the learning
theory from finite spaces to infinite ones, and is based on the observation that what matters
is not the cardinality of H, but rather its expressive power.

Let us say we have a sample S containing n points. Intuitively, these n points can be
labeled in 2n ways as positive and negative, therefore defining 2n labeling combinations.
If for any of these problems, we can find a hypothesis h ∈ H that separates the positive
examples from the negative, then we say H shatters n points, i.e. any learning problem
definable by n examples can be learned with no error by a hypothesis drawn from H. The
maximum number of points that can be shattered by H is called the Vapnik-Chervonenkis
(VC) dimension of H. We define this notion formally in the following way.

Definition 2.9 (VC dimension (Vapnik & Chervonenkis, 1971)). The VC dimension of a
set of indicator functions H is the maximum number n of vectors x1, . . . , xn that can be
separated into two classes in all 2n possible ways using functions from H. If for any n
there exists a set of n vectors that can be shattered by the set H, then the VC dimension is
equal to infinity.

To illustrate this concept, consider the space of all linear classifiers in the plane (Figure 2.4).
The VC dimension of linear functions in the plane is 3 but not 4, since no four points can
be shattered by a set of lines. In general, a linear function in an n dimensional space has
VC dimension n+ 1, which is also the number of free parameters.

Definition 2.9 has been extended to real-valued functions in (Vapnik, 1979) and can be
used to obtain generalization bounds of the following form.

Theorem 2.10 (Uniform convergence bound with VC dimension). Let S be a sample of
size n drawn i.i.d. from a distribution P, H a hypothesis space of finite VC dimension
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Figure 2.4: VC dimension of a linear classifier in the plane. A line can shatter three points
with all possible labeling combinations (on the left, three out of eight combinations), but it
cannot shatter all sets of four points (on the right). The VC dimension of a linear separator
in the plane is 3.

VC(H) and δ > 0. Then, with probability 1− δ over the sample S, we have:

R`P (h) ≤ R`S(h) +

√√√√VC(H)
(

ln 2n
VC(h) + 1

)
+ ln(4/δ)

n
.

It is worth noticing that a finite VC dimension for a hypothesis class H is equivalent to H
being PAC-learnable under some regularity conditions. The VC dimension is a pessimistic
measure, as it is distribution-free and evaluates the capacity of a class of functions in the
worst case. On one hand, this is sometimes an advantage because it guarantees the bounds
to hold for any data distribution. On the other hand, the bounds might not be tight for
certain data distributions. Moreover, it does not take into account the way the algorithm
learned the hypothesis h. In practice, the use of the VC dimension is limited, as some of
classic machine learning algorithms have infinite VC dimensions (k-NN classifier, SVMs
with certain kernels) and thus cannot be analyzed through this measure. We now turn
to the Rademacher complexity, which is a sample-dependent measure that can provide a
better insight into certain classes of functions than the VC dimension.

2.7.2.2 Rademacher Complexity

The uniform convergence bound based on the VC dimension is distribution independent.
In contrast, the Rademacher complexity is a more recent measure of complexity that allows
to factor in the data distribution, or its empirical estimate. The method of Rademacher
symmetrization has been thoroughly exploited in the empirical processes theory (Gine &
Zinn, 1984; Koltchinskii, 1981; Pollard, 1982), but its use in statistical inference has been
limited until more recent years (Koltchinskii, 2001).

Definition 2.11 (Empirical Rademacher complexity). Let S be a sample of size n drawn
i.i.d. from a distribution P and H be a class of uniformly bounded functions. For every
integer n, the empirical Rademacher complexity over H is

R̂n(H) = Eσ

[
sup
h∈H

1

n

n∑
i=1

σih(zi)

]
,

where {σi : i ∈ {1, . . . , n}} are independent Rademacher random variables, that is, Pr(σi =
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1) = Pr(σi = −1) = 1
2 .

Definition 2.12 (Rademacher complexity). The Rademacher complexity of H is defined
as

Rn(H) = ESR̂n(H).

Intuitively, for a given S and Rademacher vector σ, the supremum measures the maximum
correlation between h(zi) and σi over all h ∈ H, that is the correlation of a learned
hypothesis to a randomly relabeled sample. Rn can be viewed as a measure of capacity of
H to separate classes. As shown in (Koltchinskii, 2001), if the value of Rn is large, the
class of hypothesis H will separate positive from negative examples even if the labels are
assigned randomly. This is an indication that the hypothesis class is too large: a good
choice for H would separate well the examples only when labels are assigned correctly. We
now show a uniform convergence result for any class of bounded real-valued functions.

Theorem 2.13 (Uniform convergence bound using Rademacher complexity). With proba-
bility at least 1− δ over S, every function h in H satisfies

R`P (h) ≤ R`S(h) + 2Rn(H) +

√
ln(1/δ)

n
.

Moreover, with probability at least 1− δ over S, for every function h in H,

R`P (h) ≤ R`S(h) + 2R̂n(H) + 3

√
ln(2/δ)

n
.

Even though uniform convergence bounds do not take into account parameters from
the learning algorithm, the Rademacher complexity term in the previous theorem can
sometimes implicitly consider the impact of the regularization term. The second bound
shows that the true risk can be bounded with respect to the empirical risk and the empirical
Rademacher complexity, computed based on only one sample and one random vector σ.
Note that we will be using Rademacher complexity analysis in Chapter 4.

Independently of the choice of measure of complexity, uniform convergence analysis yields
bounds based on the size of the training sample and the class of hypothesis selected. The
main drawback of this characterization is that the bound does not take into account the
learning algorithm, i.e. how the hypothesis hS is selected. We will now present two analytical
frameworks that allow to derive generalization guarantees for a hypothesis hS based on
the properties of the learning algorithm in a setting of regularized risk minimization.

2.7.3 Uniform Stability

Algorithmic stability (Bousquet & Elisseeff, 2001, 2002) is a framework based on sensitivity
analysis, determining how much a variation in the input of a system can influence its
output. The motivation in learning for such an analysis is to design robust algorithm that
will not be affected by the sampling mechanisms providing the training set. From the
different notions of stability, we will focus on uniform stability, the strongest notion from
this family.
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Recall that X and Y ⊂ R are respectively the input and the output space. Consider a
labeled training sample S = {zi}ni=1 of size n in X × Y drawn i.i.d. from an unknown
distribution P . We will denote by Si the training set obtained from S by replacing the ith
example with a new independent one coming from the same distribution. In this setting,
we can define uniform stability for a learning algorithm.

Definition 2.14 (Uniform stability (Bousquet & Elisseeff, 2002)). Given a loss function
`, a learning algorithm has a uniform stability in κ

m with respect to `, with κ ≥ 0 constant,
if for all i,

∀S, |S| = n, sup
z
|`(hS , z)− `(hSi , z)| ≤

κ

n
.

Uniform stability ensures only small variations of the learned hypothesis are possible under
minor perturbations in the training set. This property enables us to derive a generalization
bound on the true error of an algorithm.

Theorem 2.15 (Uniform stability bound). Let S be a sample of size n drawn i.i.d. from
a distribution P , ` a loss function upper-bounded by a constant B, and δ > 0. For any
algorithm A with uniform stability of κ/n with respect to `, with probability 1− δ over the
random sample S, we have:

R`P (hS) ≤ R`S(hS) +
κ

n
+ (2κ+B)

√
ln(1/δ)

2n
,

for a hypothesis hS learned by the algorithm A from sample S.

The bounds obtained through uniform stability are relatively tight, as a consequence of
taking into account the learning algorithm (more precisely, the loss function, the regularizer
and the regularization parameter have an impact on κ). In contrast to uniform convergence,
stability does not make any assumptions about the class of hypothesis. Notice that the
two frameworks obtain the same convergence rate in the sample size. This framework
can be applied to a large number of algorithms (Bousquet & Elisseeff, 2002), including
k-NN classification, soft margin SVM classification and least squares regression. Its major
drawback is that it can only be used with strongly convex regularization functions. (Kearns
& Ron, 1997) have shown that a finite VC dimension implies stability, in the sense that
using the stability as a complexity measure does not yield worse bounds that the VC
dimension.

2.7.4 Algorithmic Robustness

Algorithmic robustness (Xu & Mannor, 2010, 2012) characterizes the capability of an
algorithm to perform similarly on close training and test instances. While uniform stability
covers the variations coming from the sample selection heuristic, robustness takes into
account the other factor that justifies the randomness in learning, which is sample noise.
For a robust algorithm, if a training sample and a test example are close to each other,
then their associated loss values must also be close. The notion of closeness is based
on a partitioning of the instance space Z based on covering numbers (Kolmogorov &
Tikhomirov, 1961).
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Figure 2.5: Robustness using an L1 norm cover. The difference in loss between z and z′

must be bounded.

Definition 2.16 (Covering number). For a metric space (S, ρ) and T ⊂ S, we say that
T̂ ⊂ S is an ε-cover of T , if ∀t ∈ T, ∃t̂ ∈ T̂ such that ρ(t, t̂) ≤ ε. The covering number of
T is:

N (ε, T, ρ) = min{|T̂ | : T̂ is an ε-cover of T}.

In other words, the covering number is the number of spherical balls of a given size ε
needed to completely cover a given space, with possible overlaps. The partition is used to
determine closeness: two examples are close if they belong to the same region, implying
that the norm between them is smaller than a fixed quantity ρ (Figure 2.5). Formally, the
robustness is defined as follows.

Definition 2.17 (Algorithmic Robustness (Xu & Mannor, 2010, 2012)). Algorithm A is
(M, ε(·))-robust, for M ∈ N and ε(·) : Zn → R, if Z can be partitioned into M disjoint
sets, denoted by {Ci}Mi=1, such that the following holds for all S ∈ Zn:

∀z = (x, l(x)) ∈ S,∀z′ = (x′, l(x′)) ∈ Z,∀i ∈ [M ] :

if z, z′ ∈ Ci, then |`(A, z)− `(A, z′)| ≤ ε(S).

Roughly speaking, an algorithm is robust if for any test example z′ falling in the same
subset as a training example z, the gap between the losses associated with z and z′ is
bounded. This notion is a desired property of a learning algorithm, as it implies a lack of
sensitivity to small perturbations in the data in the same sense as robust optimization. (Xu
& Mannor, 2010, 2012) have shown that robust algorithms generalize well in the following
theorem.

Theorem 2.18 (Algorithmic robustness bound). Let ` be a loss function bounded by a
constant B, and δ > 0. If an algorithm A is (M, ε(·))-robust, then, with probability 1− δ,
we have:

R`P (hS) ≤ R`S(hS) + ε(S) +B

√
2M ln 2 + 2 ln(1/δ)

n
,

where hS is the hypothesis learned by A from the sample S.

Note that in the previous bound there is a trade-off between M and ε(S): the smaller the
parts in the partition, the more of them there will be. Algorithmic robustness generalization
bounds are usually not tight, due to the dependence on potentially large covering numbers.
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Nevertheless, one important advantage of this framework is the capacity to integrate a
large span of regularizers, including sparsity inducing norms.

2.8 Conclusion

In this chapter, we presented the setting for supervised learning, as well as the main
frameworks for deriving generalization guarantees for learning algorithms. Based on these
notions, Chapter 3 explains the impact of metrics on algorithm performance, along with
presenting state of the methods in metric learning.
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Chapter 3

Review of Metric Learning

Chapter abstract

In this chapter, we review the existing methods for supervised and semi-supervised
metric learning. We begin by presenting an overview of some standard metrics. Our
literature study covers supervised metric learning methods for feature vectors and time
series. After discussing these aspects, we are able to conclude over the advantages and
limitations of the state of the art methods, which represent the principal motivations
for our contributions.

3.1 Introduction

The performance of most types of machine learning algorithms strongly depends on the
representation of the data and the metrics used to compare instances. However, selecting
an adapted metric or representation can prove to be a difficult task, and the choice should
take into account multiple aspects, such as the field of application, the type of data, as well
as the task to be accomplished. This is the reason for the important attention received by
the topic of representation learning, which includes subjects like metric learning (Bellet
et al., 2015), kernel learning (Sonnenburg et al., 2006), feature learning (Contardo et al.,
2016), etc. Examples of methods relying on metrics and the representation of the data
include learning algorithms with different settings:

• k-nearest neighbors (k-NN) classification (Cover & Hart, 1967), where the notion of
neighborhood is defined with respect to a distance function.

• Kernel methods (Schölkopf & Smola, 2002; Shawe-Taylor & Cristianini, 2004), where
the data is projected in a new feature space through the use of a kernel function.

• K-means clustering (Lloyd, 2006), which creates clusters of points in a way that
minimizes within-class variance under a distance function.

• Information retrieval (Frakes & Baeza-Yates, 1992), where a similarity function is
used to find the documents which are closest to a given query.

• Data visualization and dimensionality reduction (Post et al., 2002), where a metric
is often used to change the representation of the data.
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The rest of this chapter is mainly split between two major parts. Section 3.2 establishes
definitions and notations, before addressing the topic of standard metrics for features
vectors and time series. Section 3.3 formally introduces metric learning and details the most
relevant methods from this field dedicated to feature vectors and time series. This section
is mostly dedicated to supervised and semi-supervised settings. Section 3.4 concludes this
chapter by a discussion on the overall trend of state of the art methods in metric learning
and their current limitations. This allows us to fully motivate the contributions that we
propose in the following chapters.

3.2 Metrics

In this section, we provide an extended study of the most well-known measures for comparing
vectors of features and time series. We start by formally defining distance and similarity
functions.

Definition 3.1 (Distance function). A distance is a pairwise function d : X × X → R+

which satisfies the conditions:

• d(x, y) ≥ 0 (non-negativity),

• d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles),

• d(x, y) = d(y, x) (symmetry),

• d(x, z) ≤ d(x, y) + d(y, z) (subadditivity or triangle inequality).

The first two conditions define a positive definite function. By relaxing the second condition,
d becomes a pseudo-metric. The property of triangle inequality has already been vastly
exploited to speed-up certain learning algorithms such as k-NN and K-means.

Definition 3.2 (Similarity function). A similarity function is a pairwise function K :

X × X → R. K is called symmetric if ∀x, x′ ∈ X ,K(x, x′) = K(x′, x).

Similarity functions can be any pairwise functions assigning scores to pairs of points.
Normally, they act in some sense as the inverse of distances: their values are high for
similar (close) examples and low for distant ones, while dissimilarity functions behave
like normalized distance functions. A special case of similarity functions are kernels, as
presented in the previous chapter (Definition 2.5), which enforce the property of positive
semi-definiteness.

3.2.1 Metrics for Feature Vectors

Minkowski distances Minkowski distances are a family of distances induced by the Lp
norms, defined for x,x′ ∈ Rd and p ≥ 1 as

dp(x,x
′) =

∥∥x− x′
∥∥
p

=

(
d∑
i=1

|xi − x′i|p
)1/p

. (3.1)
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p→ 0 p = 0.3 p = 0.5 p = 1 p = 1.5 p = 2 p→∞

Figure 3.1: Unit circles for various values of p in Minkowski distances.

When p < 1, the previous measure is not a proper distance anymore, since it violates
triangle inequality. Minkowski distance is typically used with p being 1 or 2.

When p = 1, we recover the Manhattan distance:

d1(x,x′) =
∥∥x− x′

∥∥
1

=

d∑
i=1

|xi − x′i|.

Similarly, for p = 2, we get the Euclidean distance:

d2(x,x′) =
∥∥x− x′

∥∥
2

=

(
d∑
i=1

(xi − x′i)2

)1/2

=
√

(x− x′)T (x− x′).

The Euclidean distance has the additional properties of being translation and rotation
invariant, while Manhattan distance is only translation invariant. Note that Euclidean
distance assumes all variables are independent and that variance across all dimensions
is one, a scenario that is hardly achieved in real world. The limiting case of p reaching
infinity defines the Chebyshev distance:

d∞(x,x′) =
∥∥x− x′

∥∥
∞ = lim

p→∞

(
d∑
i=1

|xi − x′i|p
)1/p

= max
i
|xi − x′i|.

Figure 3.1 shows unit circles with various values of p.

Mahalanobis distance The Mahalanobis distance (Mahalanobis, 1936) was originally
defined as a measure of closeness between a point and a distribution. Given a vector x ∈ Rd

from a sample S of mean µ ∈ Rd and covariance matrix Σ−1, the Mahalanobis distance of
x is:

dΣ−1(x) =
√

(x− µ)TΣ−1(x− µ).

In a similar way, we can define the Mahalanobis distance between a pair of vectors x and
x′ of the same distribution with the covariance matrix Σ−1:

dΣ−1(x,x′) =
√

(x− x′)TΣ−1(x− x′).
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Currently, the term Mahalanobis distance often refers to its following variation, known
also as the generalized ellipsoid distance (Ishikawa et al., 1998):

dM(x,x′) =
√

(x− x′)TM(x− x′),

where M ∈ Sd+. Sd+ denotes the cone of symmetric PSD d× d real-values matrices. This
constraint on M makes dM a pseudo-metric. Setting M to the identity matrix yields the
standard Euclidean distance. An intuition about the transformation applied through M

can be found using Cholesky decomposition. Rewriting M as LTL, where L ∈ Rr×d and r
is the rank of M, gives:

dM(x,x′) =
√

(x− x′)TM(x− x′)

=
√

(x− x′)TLTL(x− x′)

=
√

(Lx− Lx′)T (Lx− Lx′).

This decomposition shows that the Mahalanobis distance implies computing the Euclidean
distance after a linear projection of the data using the matrix L. When r < d, M is
low-rank, and the projection through L allows for a more compact representation of the
data and cheaper computations. Because of its properties and intuitive interpretability,
the Mahalanobis distance has attracted a considerable amount of interest in the metric
learning community, as we will see in Section 3.3.

Cosine similarity The cosine similarity is a measure of similarity between two vectors
based on the cosine of the angle between them:

cos(x,x′) =
xTx′

‖x‖2 ‖x′‖2
.

Its values range from -1, signifying complete dissimilarity, to 1, meaning exactly the same.
When its value is 0, the cosine similarity indicates orthogonality (decorrelation). Figure 3.2
compares the behavior of the cosine similarity against the one of the Euclidean distance.
Cosine similarity is widely used in text mining, web mining and information retrieval (Bao
et al., 2003; Grabowski & Szałas, 2000; Hust, 2004), where documents are represented as
vectors of words indicating term frequencies.

Bilinear similarity The bilinear similarity is a generalization of the cosine similarity
parameterized by the matrix M:

KM(x,x′) = xTMx′,

where M is not required to be PSD. If the data is normalized, setting M to the identity
matrix yields the cosine similarity. The advantage of the bilinear similarity w.r.t. the
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Figure 3.2: Metric behavior for the Euclidean distance (left) and the cosine similarity
(right).

cosine similarity, Minkowski and Mahalanobis distances resides in the fact that choosing
a non-square matrix M enables the computation of scores between vectors of different
dimensions. The contributions introduced in this dissertation propose novel methods for
determining the matrix M for this similarity.

Linear kernel The simplest linear kernel is the dot product between instances in the
original space X :

Klin(x,x′) = xT · x′.

This kernel is equivalent to the cosine similarity without normalization or the bilinear
similarity when M = I.

Polynomial kernel
Kpol(x,x

′) = (〈x,x′〉+ 1)p,

where p ∈ N is the degree of the polynomial. Kpol projects the data into a nonlinear space
of all monomials of degree up to p.

Gaussian kernel The Gaussian kernel, also known as the radial basis function (RBF),
is expressed as:

KRBF (x,x′) = exp

(
−‖x− x′‖22

2σ2

)
,

where σ2 > 0 is a variance (width) parameter. This kernel is a good example of a nonlinear
implicit projection into an infinite-dimensional space.

3.2.2 Metrics for Time Series

The presence of time series in numerous fields of application makes them the object of
considerable research effort for their classification or prediction, with impact in fields like
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speech and writing recognition (Itakura, 1975), energy consumption (Dachraoui et al.,
2015), object identification and tracking (Papadimitriou et al., 2005), bioinformatics (Aach
& Church, 2001), patient care (Tormene et al., 2009), and many more. To solve such tasks,
one is inherently brought to compare time series by pairs, in order to determine their
closeness or common patterns. In this section, we present the main types of approaches for
evaluating the distance or similarity between time series.

The Euclidean distance for two univariate time series X and X ′ treats time moments as
different features:

d2(X,X ′) =

(
tX∑
t=1

(Xi −X ′i)2

)1/2

.

Short time series (STS) distance (Möller-Levet et al., 2003) is designed for unevenly sampled
time series, by explicitly modeling the varying length of sampling intervals:

d2
STS(X,X ′) =

tX−1∑
i=1

(
Xi+1 −Xi

ti+1 − ti
− X ′i+1 −X ′i

ti+1 − ti

)2

.

For the Euclidean distance and the STS distance, the series need to have the same phase
and length, which is often not the case in practice.

Probability-based measures view time series as probability distributions. Probability-based
distance (Kumar et al., 2002) is based on the distribution of errors data, which they model
through a Gaussian distribution. The resulting distance follows a Chi-square distribution
and is scale invariant. Kullback-Leibler (KL) divergence (Warren Liao, 2005) for discrete
distributions can be readily applied to time series. However, important differences in
phase between the time series result in significant value differences between probability
distributions. Moreover, KL divergence imposes that the two time series have the same
length.

2-dimensional singular value decomposition (2dSVD) (Weng & Shen, 2008) uses the
eigenvectors of row-row and column-column covariances as features, scoring the distance
between two time series with the distance between these features. Locality preserving
projections (LPP) (Weng & Shen, 2008) extends 2dSVD by trying to find a low-dimensional
projection space for the features extracted with 2dSVD where samples from the same class
are close. Both 2dSVD and LPP are sensitive to noisy data and outliers.

Complexity-invariant distance (Batista et al., 2014) uses information about complexity
differences between two time series as a correction factor for existing distance measures. For
example, the Euclidean distance can be made complexity-invariant through the following
correction:

dCID(X,X ′) = d2(X,X ′) · max(CE(X), CE(X ′))
min(CE(X), CE(X ′))

,

where CE is a complexity estimate defined as CE(X) =
√∑tX−1

t=1 (Xt −Xt+1)2. Compres-
sion rate distance (Vinh & Anh, 2015) is based on Batista et al. (2014), using the notion
of compression rate instead of the complexity factor. The compression rate is computed
based on the notion of entropy. The higher its value between two time series is, the closer
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they should be. Both distances can be computed efficiently in linear time in the length of
the time series.

Measuring the distance or similarity between time series that have the same length and
are sampled uniformly is not a complex problem. However, in time series applications, the
data is usually sampled by different sensors at different frequencies. In this case, there is
no one-to-one correspondence between the time moments, and temporal distortions and
shifts should be taken into account. To this end, time series need to be realigned before
being compared.

Time series alignment Given two univariate or multivariate time series X and X ′, an
alignment π is expressed as a sequence of pairs of indices:

π =

(
πX(k)

πX′(k)

)
, k = 1, . . . , tXX′ ,

where πX(k) is an index from time series X, πX′(k) is an index from X ′, and tXX′ is the
length of the alignment π. The pair of indices indicates that time moment Xi of index
πX(k) corresponds to time moment X ′j of index πX′(k). Under an alignment, the two time
series X and X ′ can be extended to two new ones X̄ and X̄ ′, expressed as{

X̄k = Xi

X̄ ′k = Xj
, k = 1, . . . , tXX′ .

X̄ and X̄ ′ now have the same length and can be compared directly (e.g. through Euclidean
distance). The warping path is correctly constructed if it satisfies the following constraints:

• Boundary constraint: π1 = (1, 1), πtXX′ = (tX , tX′);

• Monotonicity: if πk = (i, j) and πk+1 = (i′, j′), then i′ ≥ i and j′ ≥ j, that is the
alignment cannot progress backwards in time;

• Continuity: if πk = (i, j) and πk+1 = (i′, j′), then i′ ≤ i+ 1 and j′ ≤ j + 1, that is
every point in the time series must be used in the alignment.

Under the previous constraints, an alignment is always at least as long as the longest of the
two time series, but shorter than their cumulated lengths, i.e. tXX′ ∈ [max(tX , tX′), tX+tX′ ].
In this dissertation, we will always consider alignments constructed with these properties.
We now present the most well-known algorithm for computing the optimal alignment for a
given pair of time series.

Dynamic time warping Dynamic time warping (DTW) (Kruskall & Liberman, 1983)
is an elastic measure of the similarity between two time series which seeks to provide the
best alignment between them. Its popularity is due to its capacity to work with series of
different lengths and phases. DTW uses a dynamic programming technique to find the
minimal distance between two time series, where sequences are warped by stretching or
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Algorithm 3.1 Dynamic time warping
Input Time series X of length tX , time series Y of length tY , distance d(·, ·)
Output Distance between X and Y
DTW := array(m,n)
for i = 1 to tX do

DTW[i, 0]←∞
end for

for j = 1 to tY do
DTW[0, j]←∞

end for

DTW[0, 0]← 0
for i = 1 to tX do

for j = 1 to tY do
DTW[i, j]← d(X[i], Y [j]) + min(DTW[i− 1, j],DTW[i, j− 1],DTW[i− 1, j− 1])

end for
end for
return DTW[m,n]

shrinking the time dimension (see Figure 3.3). The method produces a valid alignment
and can be summarized as follows. Given a pair of time series X and X ′, the first step is
to construct a cost matrix C ∈ RtX×tX′ where the entry at indices (i, j) represents the cost
of aligning the time moment i from series X to the time moment j in X ′. The cost matrix
can be known or fixed for certain tasks, but in most of the cases it is computed using a
distance (usually, the Euclidean distance). Using C, DTW will compute a cumulative cost
matrix C+ ∈ RtX×tX′ , where each element C+

i,j represents the minimum cost for aligning
series X up to point i with series X ′ up to point j. This minimum cumulative cost is
obtained using the relationship:

C+
i,j = Ci,j + min(C+

i−1,j−1,C
+
i,j−1,C

+
i−1,j), (3.2)

where C+
1,1 = C1,1. After computing all the elements in C+, the minimum distance

under the best alignment is found in C+
tX ,tX′

, and the alignment can be recovered through
backtracking. The pseudo-code of DTW is detailed in Algorithm 3.1.

DTW depends on the local distance defining the cost matrix used for the alignment. Using
a task-specific cost matrix C can greatly improve performance of DTW. Notice that using
a similarity (or affinity) matrix instead of a cost matrix transforms the computation of
DTW in Equation (3.2) in a maximization problem. DTW is an elastic measure, it thus
does not have distance properties, even when the cost matrix C is constructed using a
proper distance.

The extensive comparative study from (Ding et al., 2008) proved that DTW is among the
best measures for comparing time series and that the accuracy of the Euclidean distance
converges to DTW as the size of the training set increases. Its major drawback is the
quadratic complexity in the length of the time series. These two reasons have motivated
an important research effort for improving the results of naive DTW, either by proposing
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Figure 3.3: Example of dynamic time warping alignment.

efficient computation methods (Al-Naymat et al., 2009; Salvador & Chan, 2004) that reduce
complexity, or by adjusting the constraints on the time deformation that is allowed.

Alignment constraints for DTW Applying additional constraints in the construction
of the alignment has two main motivations: (i) it can speed up the computation by analyzing
only a subset of all the possible warping paths and (ii) it can help avoid pathological
warping (e.g. aligning the beginning of a time series with the end of another). Most
heuristics for global constraints define a maximum range, usually around the diagonal,
where the alignments are allowed. The Itakura parallelogram (Itakura, 1975) present a
window which starts with width one at both ends of the time series and increases linearly
from both ends to the middle of the time series (see Figure 3.4(a)); warping is possible
only inside this area. Sakoe-Chiba band (Sakoe & Chiba, 1978) was originally used for
speech recognition and is now one of the most popular global path constraints. It imposes
a band of constant width around the diagonal in which warping is allowed (Figure 3.4(b)),
and is usually specified as a percentage of the length of the time series. In practice, small
widths (<10%) work best in most of the cases (Keogh & Ratanamahatana, 2004). Setting
the width of the band to zero yields the Euclidean distance. Ratanamahatana & Keogh
(2004) proposed the Ratanamahatana-Keogh (R-K) band, an arbitrary shaped constraint
computed from the data. The constraint can be written as a vector of values defining
the allowed range of warping at each point of a time series, as depicted in Figure 3.4(c).
The authors propose a heuristic to automatically find the most appropriate width at each
time point and show that the band improves classification performance, but determining
the form of the band is computationally more expensive than fixed-size windows. The
Sakoe-Chiba band and the Itakura parallelogram are special cases of the R-K band. Yu
et al. (2011) propose a large margin criterion to find the optimal bands which best separate
the classes. Similarly to the R-K band, here also the constraint areas have variable widths
depending on the time axis. The solution is found through brute force calculations, making
the approach rather inefficient.

The common assumption on which most of the previous methods are based is that time
series from the same class share a global pattern, while different classes are distinguishable
on at least local some shapes. To handle the cases where this condition is not satisfied,
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(a) Itakura parallelogram. (b) Sakoe-Chiba band. (c) R-K band.

Figure 3.4: Global constraints for DTW.

Frambourg et al. (2013) propose a method driven by within-class variance minimization
and between-class variance maximization for k-NN classification of multivariate time
series. They generalize the notion of variance for multivariate time series. The purpose
it to learn a matching matrix M per time series, so as to connect time series based on
their discriminative features. This is done through an iterative approach: the algorithm
considers the set of all possible matches (links) between time moments, for which a notion
of utility w.r.t. the variance is computed; the links with too small a contribution are deleted.
The utility computation and links deletion steps are iterated until all links that fit the
criterion are removed. This procedure is performed for minimizing intra class variance and
maximizing inter class variance. The weighting matrices M are used when comparing new
examples to the training set in k-NN classification.

Empirical Mahalanobis distance The method introduced in (Prekopcsák & Lemire,
2012) proposes Mahalanobis-based distances for univariate time series k-NN classification.
They consider the original form of the Mahalanobis distance, based on the inverse covariance
matrix of the data. As this matrix is not always invertible (i.e. when the number of samples
is lower than the length of the time series), they use three heuristics for approximating it:
a pseudoinverse, a covariance shrinkage method and a diagonal form of the matrix. The
experiments show that these heuristics perform worse than the classic DTW, but have the
advantage of being faster to compute.

Sequence alignment The problem of aligning time series is strongly related to the
more general one of sequence alignment. The latter is of impact in many applications
in bioinformatics, like DNA and protein sequencing, as well as handwriting recognition,
spell-checkers and natural language translation. Some of the measures used to compare
sequences, more precisely character strings, have been adapted to time series comparison.
String edit distance (Levenshtein, 1966) is a distance between strings of possibly different
lengths built from a given alphabet. It is based on three types of operations: insertion,
deletion and substitution of a symbol, each of which has a specific cost. A sequence of
operations transforming a string into another is called an edit script. The edit distance
between two strings is defined as the cost of the cheapest edit script that turns one string
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into the other. Computing the edit distance is done through a dynamic programming
algorithm similar to DTW, that also has quadratic complexity. The Levenshtein distance
is a particular form of edit distance which uses a unit cost matrix, thus corresponding to
the minimum number of operations turning one string into another. The edit distance
has been adapted to real sequences (Chen et al., 2005), making it readily applicable to
time series. Longest common subsequence (LCS) metric (Hirschberg, 1975; Maier, 1978) is
also related to the edit distance, but it allows only insertion and deletion, not substitution.
Its application to time series (Vlachos et al., 2004) is based on the idea that the longer
common subsequences the two time series have, the closer they are. The most desirable
characteristic in this distance is that it can waive noise and distortions in time series.

Temporal kernels Bahlmann et al. (2002) proposed a kernel for time series based on
the Euclidean distance and an optimal alignment between X and X ′:

Keucl(X,X
′) = exp

− arg min
π∈A(X,X′)

1

tXX′

tXX′∑
i=1

∥∥Xi −X ′i
∥∥2

 .

Another temporal kernel was proposed by Shimodaira et al. (2002), based directly on the
Gaussian kernel, also under an optimal alignment of the time series:

Kgaus(X,X
′) = arg max

π∈A(X,X′)

1

tXX′

tXX′∑
i=1

exp(− 1

σ2

∥∥Xi −X ′i
∥∥2

).

The exponentiation in the two previous formulations is introduced to make the kernels
positive definite, but this property is not guaranteed neither in theory, nor in practice.
Global alignment (GA) kernel Cuturi (2011); Cuturi et al. (2007) is in turn not based on
an optimal alignment under a certain criterion. It is instead defined as the exponentiated
soft-minimum of all possible alignment distances,

KGA(X,X ′) =
∑

π∈A(tX ,tX′ )

exp(−dX,X′(π)).

In the sense of the kernel KGA, two sequences are similar if they share a wide set of efficient
alignments. Cuturi et al. (2007) show that the GA kernel is positive definite under mild
conditions, while Cuturi (2011) proposes an efficient method for computing it.

Most of the metrics presented in this section, including DTW, are not implicitly designed
to handle time series with multiple features. One way of adapting these methods is to
weigh features equally, but that does not take into account the importance of each feature,
nor the possible differences in scale. ten Holt et al. (2007) proposed an adaptation of DTW
to the multivariate case. Shokoohi-Yekta et al. (2015) argue that DTW can be computed in
two different ways: (i) when the features are strongly correlated, first compute a score for
each time moment based on all features, then compute the DTW score for the whole time
series using the local scores, or, (ii) when the features are only loosely coupled, compute
the DTW score of each feature independently (treating them as univariate time series),
then combine them in a global DTW score. They show that in practice there is not one of
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Metric learning

Figure 3.5: Intuition behind metric learning.

these methods that outperforms the other, but that the choice must be made depending
on the application.

3.3 Metric Learning

Nonparametric distances or similarities do not have the capacity to adapt to the specificities
of the problem, thus might not yield the best results. Moreover, the choice of metric has a
crucial impact on performance.

In the previous sections, we have seen some parameterizable metrics which can be adapted
to the problem at hand. Manually tuning these metrics can be a difficult task, especially
when the number of parameters is elevated, or there is not much prior information available
about the task. Metric learning aims at finding the parameters of a distance or similarity
function that best account for the underlying geometry of the data. This section focuses
on giving a comprehensive image of the state of the art in supervised and semi-supervised
metric learning. For more details about these fields and some other settings that are not
covered in this document, see the surveys from Bellet et al. (2013, 2015); Kulis (2013);
Yang (2006).

In most instances of (semi-)supervised metric learning, the criterion that the learned metric
should satisfy enforces class structure: examples from the same class are considered similar
(or close in terms of distance) and should be placed together, while examples from different
classes are dissimilar (far) and should not be mixed by the metric (see Figure 3.5). The
parameters of the distance or similarity function are learned under the constraints induced
by the previous intuition. The constraints from the data are usually integrated as weak
supervision over pairs or triplets of points, with different semantics:

• Positive pairs (or must-link constraints): P = {(z, z′) ∈ S ×S, where z and z′ should
be similar};

• Negative pairs (or cannot-link constraints): N = {(z, z′) ∈ S × S, where z and z′

should be dissimilar};

• Relative triplets: R = {(z, z′, z′′) ∈ S × S × S, where z is more similar to z′ than to
z′′}. Triplet constraints are a weaker form of supervision than pairs, thus being in
many applications more easily available.
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In a supervised setting, these constraints are easy to generate directly from the class
information of the data. Nevertheless, producing all the pairs or triplets is costly and can
yield an extremely large amount of constraints to satisfy, as the number of pairs (triplets)
is quadratic (cubic) in the number of examples. On the other hand, the metric can be
learned based only on a subset of constraints, but then the question of which pairs or
triplets are more representative and how to find them becomes essential.

Under the constraints, the problem of learning the parameters of a metric function (usually
the entries of a matrix) can be formulated as an optimization problem over a loss function
in a regularized setting:

M̂ = arg min
M∈Rd×d

`(M,P,N ,R) + λ reg(M).

The methods from the state of the art are differentiated by the choice of the loss function
`, the regularizer reg(·), and the constraints they use (P,N ,R), as we will see in the
following.

3.3.1 Metric Learning for Feature Vectors

In the case of feature vectors, the instances are represented as vectors from a space X ⊆ Rd.
The methods in this category usually do not natively support categorical features. In this
section, we review methods for supervised Mahalanobis distance learning (Section 3.3.1.1),
supervised similarity learning (Section 3.3.1.2), semi-supervised metric learning (Sec-
tion 3.3.1.3) and metric learning with generalization guarantees (Section 3.3.1.4). An
overview of the other types of settings for learning metrics is given in Section 3.3.1.5.

3.3.1.1 Mahalanobis Distance Learning

Xing et al. Xing et al. (2002) proposed the first Mahalanobis distance learning method.
Designed for clustering, the formulation aims at maximizing the distance between dissimilar
points, while keeping the one between similar points under a certain threshold.

max
M∈Sd+

∑
(xi,xj)∈N

dM(xi,xj)

s.t.
∑

(xi,xj)∈P
d2
M(xi,xj) ≤ 1,

(3.3)

where Sd+ the cone of symmetric PSD d×d real-values matrices. Problem (3.3) is convex and
solved by a semi-definite programming (SDP) approach based on eigenvalue decomposition
(cubic complexity in the number of features). This makes it intractable for medium and
high-dimensional problems. Meanwhile, the lack of regularization makes it also sensitive to
overfitting.
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Schultz & Joachims Schultz & Joachims (2003) learn a Mahalanobis distance M from
a set of relative constraints, under the additional assumption that M = ATWA. Here, A
is a fixed matrix, and W is diagonal. The squared Mahalanobis distance becomes

d2
M(xi,xj) = (Axi −Axj)

TW(Axi −Axj).

The form of M ensures that it is PSD. W can be learned by solving the following quadratic
program:

min
W
‖M‖2F

s.t. d2
M(xi,xk)− d2

M(xi,xj) ≥ 1,∀(zi, zj , zk) ∈ R,
(3.4)

where ‖·‖2F is the squared Frobenius norm. This formulation is then adapted to allow
margin violations by introducing slack variables. As the method only learns the diagonal
matrix W, the metric is limited to a weighting of the Euclidean distance. Moreover,
handpicking A can be difficult; in practice, it is set to I.

Goldberger et al. Neighborhood Component Analysis (NCA) (Goldberger et al., 2004)
learns a Mahalanobis distance that minimizes the expected leave-one-out error of the k-NN
classifier. For this, they use the Cholesky decomposition of the matrix M = LTL. They
define the probability that two points xi and xj are neighbors using a softmax rule over
the Euclidean distance in the transformed space:

pij =
exp(−‖Lxi − Lxj‖2)∑

k 6=i exp(−‖Lxi−Lxk‖2
, pii = 0.

The distance is learned over L such that it maximizes the probability to correctly classify
xi for all i:

max
L

∑
i

∑
j:yi=yj

pij . (3.5)

When L is nonsquare, choosing L ∈ Rd×d
′ with d′ < d, induces a low-rank metric and

allows to project the data in a lower dimensional space. The main limitation of solving
Equation (3.5) over L is that the problem is nonconvex, thus being subject to local maxima.
Moreover, d′ has to be selected by hand.

Shalev-Shwartz et al. POLA (Shalev-Shwartz et al., 2004) is the first online method
for learning a Mahalanobis distance from positive and negative pairs. The method learns
the parameter matrix M, as well as a threshold b ≥ 1, used to separate classes, expressed
for a tuple (zi, zj) as:

yiyj(b− d2
M(xi,xj)) ≥ 1.

The formulation considers one pair at a time and updates the parameters in two projection
steps. The first step projects onto the set of admissible solutions for the current examples
under hinge loss for large margin separation. This is obtained using an efficient closed-form
solution. The second step projects the current solution matrix back onto the PSD cone.
Here, the projection is done efficiently, as it only needs to compute the minimum eigenvalue
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instead of a full eigenvalue decomposition (cubic complexity in the number of dimensions
of the data). The online algorithm comes with a regret bound for the separable case, and
POLA also has batch version.

Globerson & Roweis Maximally collapsing metric learning (MCML) (Globerson &
Roweis, 2006) learns a Mahalanobis distance using the same probability distribution pij
as in NCA, but this time optimizing directly over M. The idea is to consider the best
representation of the data to be of all members of a class as a single point, making the
distance between them zero, while placing different classes at infinite distance. Their
objective function minimizes the Kullback-Leibler divergence between pij and the ideal
mapping. The objective being convex in M, MCML does not have the difficulty of local
optima as NCA. Instead, it suffers from the same expensive projections as MMC.

Weinberger & Saul Large margin nearest neighbor (LMNN) (Weinberger & Saul, 2008,
2009; Weinberger et al., 2006) is one of the most popular and effective methods for learning
Mahalanobis distances for the k-NN classifier. The intuition is to obtain neighborhoods
where all k points belong to the same class, while pushing instances from other classes
outside the neighborhood. The method is based on positive and relative constraints,
redefined through the notion of neighborhood:

P = {(zi, zj) ∈ S × S, where yi = yj and xj is in the k-neighborhood of xi},
R = {(zi, zj , zk) ∈ S × S × S, where (zi, zj) ∈ P and yi 6= yk}.

The distance matrix M is learned by solving a convex problem:

min
M∈Sd+,ξijk≥0

(1− µ)
∑

(xi,xj)∈P
d2
M(xi,xj) + µ

∑
i,j,k

ξijk

s.t. d2
M(xi,xk)− d2

M(xi,xj) ≥ 1− ξijk ∀(i, j, k) ∈ R,

where µ ∈ [0, 1] is a trade-off parameter, and ξijk are slack variables that allow soft
constraints. A specific solver based on subgradient descent and sets of active constraints
allows the method to scale to millions of triplets. In spite of its lack of regularization,
LMNN performs well in most cases and has been the basis of many variants. Bellet et al.
(2012) have shown that LMNN is prone to overfitting for high-dimensional data.

Davis et al. Information-theoretic metric learning (ITML) (Davis et al., 2007) introduces
LogDet divergence regularization for Mahalanobis distance learning, at the same time
providing a cheap way for ensuring that M stays PSD. This Bregman divergence for PSD
matrices is defined as:

Dld(M,M0) = tr(M−1
0 )− log det(M−1

0 )− d,

where M0 is a preset PSD matrix to which M should remain close, acting as a regularizer.
In practice, M0 is usually set to the identity matrix, implying that M stays close to
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the Euclidean distance. The LogDet divergence is finite if and only if M is PSD, thus
minimizing it yields a proper pseudo-distance. ITML is formulated as follows:

min
M∈Sd+

Dld(M,M0)

s.t. d2
M(xi,xj) ≤ u ∀(xi,xj) ∈ S
d2
M(xi,xk) ≥ v ∀(xi,xk) ∈ D,

(3.6)

where u, v ∈ R are parameters for distance limits. Slack variables are further introduced to
allow violations. This convex problem is solved efficiently, avoiding eigenvalue decomposition
and semi-definite programming. Intuitively, minimizing Dld(M,M0) is equivalent to
reducing the KL divergence between two Gaussian distributions characterized by M

and M0. Finally, M strongly depends on the initial value M0, which is an important
shortcoming, as M0 is handpicked.

Wang et al. More recently, Wang et al. (2012b) designed a generic Mahalanobis distance
learning framework for k-NN classification, which can be cast into well-known methods
like MMC, MCML and LMNN. For this, they use a Laplacian matrix P ∈ {0, 1}|S|×|S|
modeling the target neighbor relationships: Pij = 1, if xj is a neighbor of xi, otherwise,
Pij = 0. In addition to learning the matrix M parameterizing the Mahalanobis distance,
this method also learns the target neighborhood to be considered, i.e. the constraints that
work best for the problem. Their problem can be written as:

min
M,P,Ξ

∑
i,j

Pij · fij(M,Ξ)

s.t.
∑
i,j

= |S| ·Kavg

Kmax ≥
∑
j

Pij ≥ Kmin

1 ≥ Pij ≥ 0,

constraints from the original problem,

where Ξ are the parameters specific to the original problem and fij is the function
relating the parameters M and Ξ to the neighborhood Pij in the original setting. Here,
Kmax ≥ Kavg ≥ Kmin are respectively the maximum, average and minimum number
of neighbors an instance can have, and are set in advance. The problem is solved by
alternating learning steps over the metric and the neighborhood, both of which are convex
problems, provided that the initial metric learning approach is convex.

Huo et al. Huo et al. (2016) introduce capped trace norm regularization for metric
learning. Its purpose is to provide a low-rank metric without using Cholesky decomposition
or having to manually tune the rank of the matrix M. The capped trace norm is defined
as:

reg(M) =

d∑
i=1

min{σi, ε},
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where σi represent the singular values of the learned matrix, and ε is a fixed threshold.
The impact of this regularizer is that it only minimizes the singular values which are lower
than ε. The method uses quadruplet constraints (Law et al., 2013), which encompass the
standard pair and triplet constraints and are expressed as:

A = {(zi, zj , zk, zl) ∈ S × S × S × S : d2
M(xk, xl) ≥ d2

M(xi, xj)}.

The constraints are used to solve the following problem:

min
M∈Sd+

∑
q∈A

[
ξq + (xi − xj)

TM(xi − xj)− (xk − xl)
TM(xk − xl)

]
+

+
λ

2
reg(M),

where λ is the regularization parameter and ξq are the margins for each quadruplet. The
formulation is non-smooth and non-convex, so the authors solve a convex surrogate instead.
However, using this approach, the final solution only converges to a local minima.

3.3.1.2 Similarity Learning

Qamar & Gaussier SiLA (Qamar & Gaussier, 2009b; Qamar et al., 2008) is an extension
of the voted perceptron algorithm allowing to learn a generic similarity function of the
form:

KM(x,x′) =
xTMx′

N(x,x′)
,

where N is a normalization depending on x and x′. Like in the case of most similarity
functions, M ∈ Rd×d is a square matrix that is not necessarily PSD, nor symmetric. At
each iteration, the algorithm proceeds to update the matrix in an online manner using the
perceptron rule for the points that do not respect the separation criterion. This criterion
is based on target neighborhoods similar to those from LMNN, but here the neighbors are
recomputed between iterations under the new KM. The method comes with regret bounds
for the separable and nonseparable settings, based on the theory of the voted perceptron.

Qamar & Gaussier gCosLA (Qamar & Gaussier, 2009a) is an online method for learning
generalized cosine similarities defined as:

KM(x,x′) =
xTMx′√

xTMx
√
x′TMx′

,

where M ∈ Rd×d is symmetric and PSD. Positive pairs are used to guide the method under
a hinge loss function. The algorithm is a two steps approach, similar to POLA: a projection
to obtain zero loss on the current pair, followed by a second one onto the cone of PSD
matrices. The authors derive a closed-form solution for the former step, but the latter
needs a full eigenvalue decomposition, making it computationally expensive. In practice,
gCosLA improves performance over SiLA and has comparable results to LMNN and ITML.
gCosLA also comes with regret bounds and a batch version.
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Chechik et al. OASIS (Chechik et al., 2009) is an online approach for learning a bilinear
similarity for image retrieval based on k-NN. The method uses relative constraints and a
hinge loss over the triplets. Starting with M = I, each iteration t is performed by solving
the following convex problem on one triplet drawn randomly:

Mt = arg min
M,ξ

1

2

∥∥M−Mt−1
∥∥2

F + cξ

s.t. 1− d2
M(xi,xj) + d2

M(xi,xk) ≤ ξ ξ ≥ 0,

(3.7)

where c is a trade-off parameter that controls how much the solution will be affected by
each iteration, and ξ is a slack variable. If the triplet constraint is satisfied, then no update
is performed; otherwise, the solution is updated through a closed-form update based on
the passive-aggressive algorithm (Crammer et al., 2006). As a result of using a bilinear
similarity, the method can handle sparse data (in their experiments, images stored through
bag-of-words) in an efficient way, allowing it to scale to millions of examples.

3.3.1.3 Semi-Supervised Metric Learning

The following metric learning methods use a semi-supervised setting in order to improve
the performance through the use of unlabeled data.

Hoi et al. Laplacian regularized metric learning (LRML) (Hoi et al., 2008, 2010) is one
of the first methods to explore unlabeled data explicitly for distance learning. It learns
a Mahalanobis distance M with manifold regularization using a Laplacian matrix which
integrates neighborhood relations. The side information comes in the form of positive and
negative pairs. LRML is formulated as:

min
M∈Sd+

tr(XLXTM) + γs
∑

(xi,xj)∈P
d2
M(xi,xj)− γd

∑
(xi,xk)∈N

d2
M(xi,xj)

s.t. log det(M) ≥ 0,

(3.8)

whereX is the data matrix where each xT is a row, γd, γs > 0 are trade-off parameters and tr

is the trace operator. Here, L = D−W is a Laplacian regularizer, where W ∈ {0, 1}|S|×|S|
is the Laplacian matrix and D ∈ N|S|×|S| is a diagonal matrix computed as Dii =

∑
jWij ,

i.e. containing the total number of neighbors for each point. The constraint is introduced
to prevent trivial solutions where the entire space is shrunken (M = 0). Problem (3.8) is
solved either as a classic SDP or in a modified, faster version through matrix inversion.
LRML is used to solve image retrieval and image clustering applications, with particularly
good results compared to fully supervised methods when side information is scarce. This
indicates that semi-supervised metric learning can leverage additional information coming
from unlabeled data for better performance.

Zha et al. Log-determinant regularized distance metric learning L-DML (Zha et al., 2009)
uses a similar formulation to that of LRML, with the distinction that the regularization term
is a weighted sum using multiple metrics, which are learned over various datasets different
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from the target task. The method learns one Mahalanobis distance using the positive and
negative pairs from the given dataset to measure the loss, while the regularization term
uses unlabeled data from different tasks.

min
M∈Sd+,α

K∑
k=1

αk tr(XLkX
TM) + γs

∑
(xi,xj)∈P

d2
M(xi,xj)− γd

∑
(xi,xk)∈N

d2
M(xi,xj) + β ‖M‖22

s.t.
K∑
k=1

αk = 1, αk ≥ 0,∀k,

(3.9)
where α contains the weights associated with each of the K metrics, β is a regularization
parameter, and all the other notations correspond to the ones in LRML (Problem (3.8)).
The authors propose to solve the problem by alternating optimization steps over M (SDP)
and α (LP).

Niu et al. SERAPH (Niu et al., 2012) is a semi-supervised information-theoretic approach
that learns a Mahalanobis distance. The metric is optimized to maximize the entropy over
labeled similar and dissimilar pairs (in our notation, P and N ), and to minimize it over
unlabeled data (U). Let pMij (y) = pM(y|xi,xj) be the probability of labeling (x,x′) with
label y, parameterized by the distance matrix M. SERAPH is expressed as:

max
M,κ

∑
P∪N

ln pMij (yij)−
γ

2
κ2 + µ

∑
U

∑
y

pMij ln pMij (y)− λ tr(M), (3.10)

where µ, λ are trade-off parameters between supervision, unsupervised information and
regularization, yij is the (shared) label of xi and xj and κ is a dual variable. The penalty
presumes a Gaussian prior on the expected data moments, following the generalized
maximum entropy principle (Jaynes, 1957). The formulation in Problem (3.10) is non-
convex, being solved through an expectation-maximization (EM) algorithm. In experiments
for k-NN classification, SERAPH slightly outperforms fully supervised methods like LMNN.

Semi-supervised metric and kernel learning has also been used to aid unsupervised learning,
more precisely clustering, through small amounts of labeled data (Baghshah & Shouraki,
2009; Bilenko et al., 2004; Yeung & Chang, 2007; Yin et al., 2010).

In Chapter 4, our contribution will show a different way of exploiting unlabeled data in a
semi-supervised classification setup.

3.3.1.4 Metric Learning with Generalization Guarantees

Although a large number of methods have been developed for (semi-)supervised metric
learning, few studies analyze the theoretical properties of this type of algorithm. In
the context of metric learning, and in contrast to the general machine learning setting,
generalization guarantees can be addressed from two points of view:
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• The consistency of the learned metric, i.e. the capacity of the metric to unseen
examples and constraints; in practice, this amounts to bounding the difference
between its performance on the training sample and on unseen examples.

• The performance of the associated classifier for the given task in terms of generaliza-
tion error when using the learned metric.

Another important distinction between generalization bounds for machine learning in
general and metric learning comes from the sampling of the data. All the theoretical
frameworks presented in Section 2.7 make the assumption that the examples are independent
and identically distributed. While this claim is often satisfied when using labeled examples
directly, as we have seen, metric learning algorithms usually incorporate constraints on
pairs and triplets of points. Even though the examples themselves are drawn i.i.d., this is
not the case for the constraints. For this reason, standard theoretical frameworks cannot
be applied directly to metric learning. However, the exist strategies that allow to make the
pairs or triplets independent.

We now discuss the two questions of metric consistency and classifier performance based
on the studies that have explored them.

Metric consistency Jin et al. (2009) study a generic distance learning formulation
under Frobenius regularization and pair constraints:

min
M∈Sd+

1

|S|2
∑

(zi,zj)∈S×S
`(d2

M, zi, zj) + λ ‖M‖F , (3.11)

where λ > 0 is the regularization parameter. The loss function they use is:

`(d2
M, zi, zj) = f(yiyj(1− d2

M(xi,xj))),

where f is convex and Lipschitz continuous. The paper adapts the framework of uniform
stability (see Section 2.7.3) to the case of learning distances from pairs of examples. For
their setting, they provide a generalization bound for the learned metric, but, as it is
always the case for uniform stability, this limits their framework to Frobenius regularized
formulations. The bound they deduce relates the true error of the learned metric R`P to
the empirical loss R`S :

|R`P (M)−R`S(M)| ≤ 8L2R2

λn
+

(
8L2R4

λ
+ 4Ls(d) + 2g0

)√
ln(2/δ)

2n
,

where the loss is L-lipschitz, supx ‖x‖2 ≤ R, s(d) = min

(√
dg0
2λ , η(d)

)
, g0 is the maximum

loss when M = 0 and tr(M) ≤ η(d). In practice, Problem (3.11) is solved through an
online approach, for which they provide regret bounds.

Bian & Tao (2011, 2012) develop an ERM framework for Mahalanobis distance learning
under constraints. The generic loss function they use is close to the one from (Jin et al.,

46



Chapter 3. Review of Metric Learning

2009):
`(d2

M, zi, zj) = f(yiyj(c− d2
M(xi,xj))),

with c > 0 a threshold parameter separating positive from negative pairs, and f a convex
and Lipschitz continuous function. The framework is formulated as follows:

min
(M,c)∈Q

1

|S|2
∑

(zi,zj)∈S×S
`(d2

M, zi, zj), (3.12)

where the set of constraints Q = {(M, c) : 0 �M � I, 0 ≤ c ≤ a0, a0 > 0} plays the role of
limiting the complexity of the hypothesis. The theoretical results prove the consistency of
the learned distance, i.e. its convergence to the optimal value, as well as a generalization
bound. This framework is applicable to a large range of loss functions, of which the authors
study the logarithmic loss and a smoothed version of the hinge loss. However, the ERM
design of the problem prevents it from being used with regularization.

Cao et al. (2012) use the Rademacher complexity to derive consistency bounds for metrics
learned under several matrix norm regularizers. The theoretical results cover the bilinear
similarity and the Mahalanobis distance. Given a sample S of n instances, their learning
formulation (using the Mahalanobis distance) is the following:

min
M∈Sd+,b∈R

1

n(n− 1)

∑
i,j∈Nn,i 6=j

[1 + yiyj(dM(xi, xj)− b)]+ + λ ‖M‖2 , (3.13)

where b is an offset they learn at the same time as the metric, λ is the regularization param-
eter and ‖·‖ is a general matrix norm. The consistency bound derived for Problem (3.13)
is the following:

R`P (M, b)−R`S(M, b) ≤ 4Rn√
λ

+
4(3 + 2X∗/

√
λ)√

n
+ 2(1 +X∗/

√
λ)

√
2 ln(1/δ)

n
,

where Rn is the Rademacher complexity and X∗ = supx,x′
∥∥(x− x′)(x− x′)T

∥∥
∗.

Bellet & Habrard (2015) adapt the notion of algorithmic robustness (presented in Sec-
tion 2.7.4) to the metric learning setting, where data is accessed through pairs of points.
Their results hold for any matrix norm regularizer. For a (K, ε(·))-robust algorithm, with
probability 1− δ, we have:

R`P (M)−R`S(M) ≤ ε(S) + 2B

√
2K ln 2 + 2 ln(1/δ)

n
,

where the loss function ` is bounded by B. Furthermore, they show that a weak notion
of robustness is a necessary and sufficient condition for a metric learning algorithm to
generalize.

Regressive virtual metric learning (RVML) (Perrot & Habrard, 2015) is a Mahalanobis
distance learning method based on virtual points. These points are set beforehand and
help setting the constraints for the metric: each training point is assigned a virtual point,
to which the metric will try to bring it close. Assigning a single virtual point per example
drastically reduces the number of constraints of the problem, but makes the strategy for
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choosing virtual points vital for performance. The authors propose two heuristics for virtual
points selection, one based on optimal transport (Villani, 2009), the other on choosing one
virtual point per class and pushing all the points from the same class towards it. Once
the virtual points are selected, RVML is formulated as a regularized least-squares problem
over matrix L ∈ Rd×d

′ coming from the decomposition M = LTL:

min
L

1

|S| ‖XL−V‖2F + λ ‖L‖2F , (3.14)

where X is the data matrix, V is the virtual points matrix, and λ is the regularization
parameter. Problem (3.14) has a closed-form solution using matrix inversions, which limits
its scaling capacities for high dimensional datasets. The matrix M is PSD by construction,
thus avoiding expensive projections. RVML comes with a consistency bound based on
uniform stability:

R`P (M)−R`S(M) ≤ 8C2
vC

2
x

λn

(
1 +

Cx√
λ

)2

+

((
1 +

16C2
x

λ

)
C2
v

(
1 +

Cx√
λ

)2
)√

ln(1/δ)

2n
,

where the training examples are bounded w.r.t. a constant ‖x‖2 ≤ Cx, and the landmarks
are also bounded as ‖v‖2 ≤ Cv. The authors further link their formulation to the general
framework in Jin et al. (2009).

Classifier performance with learned metrics To the best of our knowledge, the
problem of finding the link between the prediction performance and the properties of a
learned metric has only been tackled for linear classification.

Similarity learning for linear classification (SLLC) (Bellet et al., 2012) uses the theory of
(ε, γ, τ)-good similarity functions (Balcan & Blum, 2006; Balcan et al., 2008b) to ensure
the performance of the classifier constructed using the learned metric. The framework of
(ε, γ, τ)-good similarity functions is one of the first results that relates the properties of a
similarity function to those of a linear classifier using it. The contributions in this thesis
are strongly based on the (ε, γ, τ)-good framework; we will thus present it in more detail
in Chapter 4. Bellet et al. (2012) propose to directly optimize the (ε, γ, τ)-goodness of a
bilinear similarity under Frobenius regularization before plugging it in the linear classifier
proposed by Balcan et al. (2008b). They also derive consistency bounds for the metric
through uniform stability.

Guo & Ying (2013) extend the results from (Bellet et al., 2012) to several matrix norms
using a Rademacher complexity analysis, based on techniques from (Cao et al., 2012).
Recently, this framework has further been adapted to regularized online learning from
pairs of points with theoretical guarantees (Guo et al., 2016).

3.3.1.5 Other Types of Approaches

Nonlinear metric learning The approaches we have analyzed so far learn a linear
metric. Only a small number of methods have directly used nonlinear forms of metrics.
The main difficulty is that introducing nonlinearity often makes problem suffer from non
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convexity.

Chopra et al. (2005) proposed the first method for learning nonlinear metrics. They aim
to learn a low-dimensional representation of the data where the examples in positive pairs
are represented as close, while negative pairs are far. The nonlinear projection is obtained
through a multilayer convolutional neural network. The weights of this model are learned
through back-propagation and stochastic gradient descent, minimizing a loss function
which imposes a separation criterion.

Gradient-boosted LMNN (GB-LMNN) (Kedem et al., 2012) is a version of LMNN learning
a distance in a projection space determined by a nonlinear function φ. The mapping is
defined as a combination between the metric of standard LMNN and additive combination
of gradient boosted regression trees (Friedman, 2000). The algorithm is iterative and aims
at adding to the solution a new tree from the set of all regression trees of fixed depth at
each step.

Another way of introducing nonlinearity is to kernelize a linear method using the kernel
trick, as it is often done for SVMs. Methods that we have presented earlier which have
been kernelized include Bellet et al. (2012); Davis et al. (2007); Schultz & Joachims (2003);
Shalev-Shwartz et al. (2004).

Multiple metric learning Learning multiple linear metrics has the capacity to capture
the heterogeneities of complex tasks for which using one metric does not perform well. The
purpose is often to learn one metric per region of the space, or even one metric per examples.
The challenge in this setting becomes the computational complexity of learning the metrics
simultaneously, as well as providing a coherent global metric, that varies smoothly and
compares examples from different regions in a consistent way.

M2-LMNN Weinberger & Saul (2008, 2009) is an extension of LMNN that learns multiple
metrics. The training data is first partitioned in C clusters. M2-LMNN learns one metric
per cluster using the same objective as LMNN. When computing a distance, the metric
associated to the first point in a pair is used. The overall learned metric is thus not
symmetric, nor smooth. Moreover, it is sometimes prone to overfitting and computationally
expensive.

Parametric local metric learning (PLML) (Wang et al., 2012a) learns one Mahalanobis
distance per instance. Each distance is expressed as a linear combination of a limited
number of metrics. The overall metric varies smoothly over the data manifold. The problem
is solved in two steps: first, the weights for each instance are computed, then the metric
bases are learned.

Sparse compositional metric learning (SCML) (Shi et al., 2014) learns a Mahalanobis
distance in the form of a sparse linear combination of rank-one matrices. The combination
of bases is custom per instance, but is still lightweight. The main disadvantage of the
method is that the set of rank-one matrices is considered known (although the authors
propose to generate them by clustering and Fischer discriminant analysis).

C2ML (Zantedeschi et al., 2016) addresses the problem of learning local combinations of
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Table 3.1: Main characteristics of the reviewed metric learning methods for feature vectors.

Method Convex Scalable Regularized Semi-sup. Online Generalization

Xing et al. X × × × × ×
Schultz & Joachims X X X × × ×
POLA X X × × X ×
NCA × X × × × ×
MCML X × × × × ×
LMNN X X × × × ×
Wang et al. X X X × × ×
ITML X X X × × ×
SiLA - X × × X ×
gCosLA X X × × X ×
OASIS X X X × X ×
LRML X X X X × ×
L-DML X X X X × ×
SERAPH × X X X × ×
Jin et al. X X X × X X
Bian & Tao X X × × × X
SLLC X X X × × X
RVML X X X × × X

metrics to obtain a smooth and symmetric overall metric. Starting from a partition of the
space and a score function for each region, C2LM defines a metric between points as a
weighted combination of the models. A weight vector is learned for each pair of regions,
and a spatial regularization ensures that nearby models are favored in the combination.
The method is designed for regression, using similarities and distances.

Table 3.1, which extends the one from Bellet (2012), reviews the main characteristics of
the supervised and semi-supervised metric learning approaches for feature vectors that we
studied in this section.

3.3.2 Metric Learning for Time Series

An important proportion of the metrics that perform well on time series are not designed to
deal with multivariate time series. One trivial way of adapting them is to weigh all features
equally, but this results in degrading performance, as it does not take into account the
varying importance of features, nor the possible differences in scale. Metric learning can
address exactly this problem by learning the weights of the features and the correlations
between them from the available training data. Unfortunately, metric learning for time
series has been addressed only by a small number of methods, that we present in this section.
These methods are mostly designed for k-NN classification, following the orientation of the
time series analysis community.

Sun et al. Sun et al. (2010) apply Average Neighborhood Margin Maximization (ANMM)
(Wang & Zhang, 2007) to time series classification for the specific application of physiological
data. ANMM is a supervised feature extraction method which aims to learn a projection
matrix. For each training sample xi, the method enlarges its margin to neighbors from
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other classes Pi, while keeping the distance to its neighbors from the same class Ni as
small as possible. The Mahalanobis distance they learn optimizes the ratio between the
sum of distances over positive, respectively negative pairs:

min
M

∑
xi∈S

∑
xjPi d

2
M(xi,xj)∑

xi∈S
∑

xkNi d
2
M(xi,xk)

.

Sun et al. (2010) apply ANMM on features extracted from the temporal data in two
ways: either using the first two statistical moments of each feature, or using the wavelet
coefficients over temporal fixed-size windows.

Lajugie et al. In (Lajugie et al., 2014), the authors propose to learn a Mahalanobis
distance for multivariate time series alignment of audio data. Let X = (A,B) be a pair
of time series of same dimension d, but possibly of different lengths tA and tB, where
A ∈ RtA×d and B ∈ RtB×d. The pairwise cost matrix used for computing the DTW cost is:

C(X,M)i,j = −(ai − bj)
TM(ai − bj),

where a1, . . . ,atA are the time moments (rows) of A, and similarly for B. Considering
groundtruth pairs of the form {(Xi, π

∗
i )}ni=1 known, they learn the Mahalanobis distance

in the following way:

min
M

1

n

n∑
i=1

`H(π∗i , arg max
πi∈A(tA,tB)

tr(C(Xi,M)Tπi)) + λ ‖M‖2F , (3.15)

where λ is the regularization parameter and `H is the Hamming loss (Hamming, 1950)
between two alignments π1 ∈ {0, 1}tA×tB and π2 ∈ {0, 1}tA×tB encoded as binary matrices:

`H(π1, π2) = ‖π1 − π2‖2F .

Problem (3.15) is intractable, but the authors solve a large margin surrogate instead. One
significant limitation of this approach is that the true alignments are considered a priori
known for the audio task, information that is not available in most cases. For this reason,
their method cannot be applied in other contexts.

Mei et al. LDMLT (Mei et al., 2015) was designed to learn a Mahalanobis distance for
multivariate time series classification from triplet constraints. The loss function over one
triplet is computed through the DTW under Mahalanobis distance:

`(M, zi, zj , zk) = ρ+ DTWM(zi, zj)−DTWM(zi, zk),

where ρ > 0 represents the target margin. The loss function is minimized one triplet at a
time under the same LogDet regularizer as ITML. At iteration t, the objective function is
thus:

Mt+1 = arg min
M∈Sd+

Dld(M,Mt) + λt`(M, zi, zj , zk), (3.16)
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with λt controlling the trade-off between satisfying the triplet constraint and keeping
the metric matrix close to the one in the previous iteration. Problem (3.16) is solved
using a closed-form solution. Experiments are performed for nearest neighbor and SVM
classification with good results. However, the loss function they use for the metric learning
step is not related to the losses of the classifiers using it afterward.

Chen et al. Model Metric Co-Learning (MMCL) (Chen et al., 2015) uses a nonlinear
state space model to learn a metric adapted to univariate and multivariate time series
classification. The final representation of a sequence is a linear readout mapping, but the
underlying model is a nonlinear dynamic system. The n-dimensional dynamical model is:

x(t) = tanh(Rx(t− 1) + Vs(t)),

f(t) = Wx(t),
(3.17)

where x(t) ∈ Rn, s(t) ∈ Rm and f(t) ∈ Rm are respectively the state vector, the input
vector and output at time t; R ∈ Rn×n is a dynamic coupling matrix, V ∈ Rm×n and
W ∈ Rn×m are the input and output weight matrices. Equations (3.17) is the State
Transition Mapping (STM). MMCL learns a global metric M under the same formulation
as MCML (see Section 3.3.1) to obtain class separation, where the Mahalanobis distance is
defined over the weights W

dM(i, j) = (wi −wj)
TM(wi −wj) (3.18)

The metric operates over a nonlinear state space model with a low representation cost,
expressed as:

Qp(r,W) =
∑
s∈S

ts∑
t=1

‖f(t)− s(t+ 1)‖2 + η ‖W‖2 .

This equation aims to minimize the difference between actual output f(t) and desired
output s(t+ 1). A trade-off parameter λ controls the importance of these costs in the final
formulation:

min
r,M

Qs(r,M) + λQp(r,W),

where r are the parameters of the readout model and Qs(r,M) is the loss function from
MCML using the distance in Equation (3.18). The problem is solved through alternating
between state space model learning and metric learning in the readout model space.

Zhao et al. metricDTW (Zhao et al., 2016) proposes an adaptation of LMNN for
Mahalanobis distance learning in the case of univariate time series k-NN classification. The
method extracts local time series descriptors, clustering them and learning one metric per
pair of clusters. The Mahalanobis distance is computed under DTW alignments computed
beforehand. However, the matrices are constrained to be diagonal with the same value all
over, which boils down to learning a scalar instead of a metric.
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Shen et al. Shen et al. (2016) propose LMNN-DTW, a different adaptation of LMNN
to the multivariate time series case. Their objective is to learn a Mahalanobis distance for
k-NN classification. Their formulation is mostly similar to LMNN, with the exception that
the distance function is replaces with the cost of DTW under metric M:

min
M∈Sd+

(1− µ)
∑

(i,j)∈P
DTWM(Xi, Xj)

+µ
∑

(i,j,l)∈R
(1− yil)[1 + DTWM(Xi, Xj)−DTWM(Xi, Xl)]+,

(3.19)

where P and R are respectively the set of positive pairs and the set of relative triplets,
both constructed as in LMNN, and µ is a trade-off parameter. The term yil is 1 when Xi

and Xl share the same label, and 0 otherwise. The problem with Formulation (3.19) is that
the measure of DTW under a metric M also takes into account the optimal alignment. As
the optimal alignment is computed through dynamic programming and changes when the
metric is changed, optimizing it is NP-hard. Moreover, this combinatorial factor makes the
objective function non-convex and non-differentiable. To overcome this impediment, the
authors propose an iterative approach, which first computes the best alignment through
DTW under a fixed metric, then solves Problem (3.19) for a fixed alignment, much like
standard LMNN. These two steps are repeated until convergence. To try and alleviate
the problem of local minima, the authors use random initializations for the metric matrix
M. In practice, LMNN-DTW has a higher order of complexity than similar methods (e.g.
LDMLT), thus being slower, while achieving inferior performance.

3.4 Conclusion

In this chapter, we have discussed standard metrics for feature vectors and time series.
Their limitations justify the important body of work in metric learning aiming to provide
task-specific measures. We have given an overview of a significant number of methods for
supervised and semi-supervised metric learning for feature vectors and time series. The
following points summarize the state of the art methods presented previously:

• Over the past 15 years, metric learning for feature vectors has focused on providing
practical solutions for a computationally expensive problem. Currently, state of the
art methods perform well and are efficient. However, this focus on practical aspects
has been in the detriment of developing a theoretical foundation for metric learning.
More precisely, only a small number of studies have been concerned with establishing
the consistency of the learned metric on unseen data. Another question that has only
rarely been answered is how do the properties of the metric relate to the capacities
of the classifier using it, and what can be said about the link between the empirical
risk and the true risk.

• A small number of metric learning approaches exists for semi-supervised classification.
These methods explore a limited number of ways to incorporate unlabeled information,
mostly through adjacency relations. None of these methods come with any theoretical
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guarantees over the metric or the classifier.

• Metric learning for time series has been addressed by a relatively small number of
studies, mainly because of the additional computational complexity introduced by
this type of data. Most of the existing methods are adaptations of existing metric
learning algorithms for feature vectors to temporal data. Furthermore, they are often
applied on univariate time series, although multivariate temporal data is frequent in
applications. The question of how to weigh multiple features across time remains
a challenge. Moreover, if for feature vectors recent studies have started developing
theoretical guarantees, this is not the case for metrics learned for time series.

• Metrics learned for feature vectors and time series classification are usually associated
with the k-NN rule, while other types of classifiers have not extensively been explored.

The contributions in this dissertation aim to address the limitations of the state of the
art methods. Chapter 4 is devoted to semi-supervised metric learning for feature vectors.
We propose a generic framework that is capable of jointly learning a similarity function
and a global linear separator from partially labeled data. We show that this framework
can be used with a large number of similarity functions and regularizers. We derive two
generalization bounds for our approach, one based on algorithmic robustness, the other
one based on Rademacher complexity. Lastly, we compare these two frameworks in terms
of results derivation and quality of the bounds. Chapter 5 is dedicated to learning metrics
for multivariate time series classification. We propose a parameterized similarity function
for time series and a method for learning it. We prove the consistency of our algorithm
through arguments of uniform stability. The learned similarity function is used to induce a
linear separator with good classification guarantees in the feature space.
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Chapter 4

Joint Similarity and Classifier
Learning for Feature Vectors

Chapter abstract

In this chapter, we propose a novel, generic framework for performing similarity
learning at the same time as learning a global linear classifier from feature vectors. The
formulation is capable of leveraging information from unsupervised data additionally
to a labeled training set, making it a semi-supervised setting. We show that our
framework can be used with a large class of regularizers and many similarity functions.
We provide a theoretical analysis of this joint learning formulation through two different
frameworks, the algorithmic robustness and the uniform convergence based on the
Rademacher complexity, which we further compare. The theoretical results hold for
the learned metric and the classifier at the same time. Moreover, they are generic
and cover different similarity functions and regularizers without enforcing strong
constraints. Experiments conducted on standard datasets show the benefits of our
approach over state of the art methods: JSL is efficient and performant.

The content of this chapter is based on the following international publications:

Maria-Irina Nicolae, Éric Gaussier, Amaury Habrard, and Marc Sebban. Joint semi-
supervised similarity learning for linear classification. In Proceedings of the European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML/PKDD), pages 594–609, 2015a.

Maria-Irina Nicolae, Marc Sebban, Amaury Habrard, Éric Gaussier, and Massih-Reza
Amini. Algorithmic Robustness for Semi-Supervised (ε, γ, τ)-Good Metric Learning.
In Proceedings of the 22nd International Conference on Neural Information Processing
(ICONIP), pages 253–263, 2015b.

Maria-Irina Nicolae, Marc Sebban, Amaury Habrard, Éric Gaussier, and Massih-Reza
Amini. Algorithmic Robustness for Learning via (ε, γ, τ)-Good Similarity Functions.
In ICLR Workshop, 2015.

4.1 Introduction

As we have seen in the previous chapter, state of the art in metric learning for feature
vectors is dominated by fully supervised methods, most of which are designed for k-NN
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classification. These metrics are mostly Mahalanobis distances, constraining the parameter
matrix to be PSD and symmetric. However, the learned metrics are in most cases not
guaranteed to perform well and lack generalization guarantees.

Balcan et al. (2008b) have proposed a theoretical framework that relates the properties
of similarity functions to their performance in learning. This theory is based on an
intuitive and practical definition of what makes a good similarity function. Essentially,
a similarity K is (ε, γ, τ)-good for a given binary classification problem if a proportion
of 1 − ε examples are on average more similar to reasonable examples of the same class
than to reasonable examples of the opposite class, where a τ proportion of the examples
are considered reasonable. Under K, the classes should be well separated by a margin
of γ. The similarity K is not requested to be a distance, nor positive semi-definite, but
can be any bounded similarity function. Given that K has these properties, the (ε, γ, τ)-
good framework provides generalization guarantees on a linear classifier learned from the
similarity. This separator can be learned efficiently using a linear program (LP) and can
enforce sparsity due to an L1 norm constraint.

The first contribution in this chapter is to propose a new, generic similarity and linear
classifier learning formulation for feature vectors. Our setting (JSL, for Joint Similarity
Learning) can accommodate a large range of similarity functions that are not required
to be PSD, and different regularizers. For the examples of similarities that we study, the
formulation is convex and can be solved efficiently, potentially leading to sparse solutions.
We propose two variants of JSL: one which learns a full matrix, and another which limits
the numbers of parameters by only learning a diagonal matrix (JSL-diag), thus being
able to obtain a metric from a small amount of data. Optimizing the (ε, γ, τ)-goodness
of the similarity function preserves the theoretical guarantees from Balcan et al. (2008b)
on the classifier in relation to the properties of the similarity. Furthermore, and unlike
Bellet et al. (2012), we propose here to jointly learn the metric and the classifier at the
same time. This allows learning both the metric and the separator in a semi-supervised
way, thus making use of the additional information coming from unlabeled data. To our
knowledge, these two learning steps have never been performed jointly in metric learning.
Semi-supervision makes JSL appropriate for a practical situation frequent in learning when
the annotation of data is expensive, but unlabeled data can be easily obtained. We provide
a complete theoretical analysis of our approach using two different frameworks: algorithmic
robustness and uniform convergence with Rademacher complexity. We use them to derive
two consistency bounds for the joint optimization problem, which we compare and discuss.
Lastly, we provide an empirical study on classic datasets and compare our method to
different families of supervised and semi-supervised learning algorithms, with or without
metric learning.

The rest of this chapter is organized as follows. In Section 4.2, we introduce the theory
of (ε, γ, τ)-good similarity functions. Section 4.3 presents the formulation of JSL, our
joint similarity and classifier learning framework, followed by some examples of similarity
functions and regularizers that can be used with it. In Section 4.4, we propose a theoretical
analysis of JSL, through the frameworks of algorithmic robustness and Rademacher
complexity, leading to the derivation of generalization bounds. Section 4.5 proposes
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JSL-diag and its theoretical guarantees for learning a diagonal metric. The experimental
evaluation in Section 4.6 proves the functional capacities of the proposed approach, with
different similarities and regularizers. We compare JSL against a large number of machine
learning and metric learning methods, some fully supervised, and others semi-supervised.
Finally, we conclude our contribution in Section 4.7.

4.2 (ε, γ, τ)-Good Similarities Framework

Balcan & Blum (2006); Balcan et al. (2008a,b) proposed a new learning theory for similarity
functions. The goal of this framework is to generalize over learning with kernels, by relaxing
some constraints, while still providing guarantees over the results. The theory of kernels is
based on the large margin separation achieved between classes in the (sometimes) implicit
and unknown mapping space of the kernel. However, the separation is not visible or
evident in the original space of the data, making the design of kernels difficult. Moreover,
the positive semi-definiteness constraint on kernels excludes from usage many intuitive
similarity functions for the given task. To overcome these limitations, Balcan et al. define
a new notion of good similarity function as follows.

Definition 4.1. (Balcan et al., 2008b) A similarity function K is an (ε, γ, τ)-good similarity
function for a learning problem P if there exists a (random) indicator function R(x) defining
a (probabilistic) set of "reasonable points" such that the following conditions hold:

1. A 1− ε probability mass of examples (x, y) satisfy:

E(x′,y′)∼P
[
yy′K(x,x′)

]
≥ γ,

2. Prx′(R(x′)) ≥ τ .

The first condition in Definition 4.1 can be interpreted as having a (1− ε) proportion of
examples x on average 2γ more similar to random reasonable examples x′ of their own
label than to random reasonable examples x′ of the other label. It also expresses the
tolerated margin violations in an averaged way: this allows for more flexibility than pair-
or triplet-based constraints. The second condition sets the minimum mass of reasonable
points one must consider (greater than τ). Notice that no constraint is imposed on the
form of the similarity function. The definition covers kernel functions, as well as a large
class of non PSD and non symmetric bounded similarities. More importantly, Balcan et al.
(2008b) show that good similarity functions under Definition 4.1 can be used to learn a
linear separator with good properties, i.e. low true risk.

Consider an (ε, γ, τ)-good similarity function K. If the set of reasonable points R =

{(x′1, y′1), . . . , (x′r, y
′
r)} of size r is known, then, by using the empirical version of the

expected values in Definition 4.1, the classifier achieving a true risk smaller than ε at
margin γ is:

h(x) = sgn

[
1

r

r∑
i=1

y′iK(x,x′i)

]
.
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Figure 4.1: Example of (ε, γ, τ)-good similarity function. Left side: the original data in
the input space is not separable; right side: the similarity projection space, where the
separator classifies all points correctly. Reasonable points are outlined in black.

Here, h is a linear classifier in the space of the similarity scores to the reasonable points.
This implies that the data is projected through K with respect to the reasonable points
using the mapping φ : X → Rr,

φi(x) = K(x,x′i), i ∈ {1, . . . , r}.

An example of input and similarity spaces is shown in Figure 4.1.

In practice, the set of reasonable points is not necessarily known. In this case, a set of
landmarks can be sampled from the data to replace them. The number of landmarks
needed is proportional to the parameter τ , the probability of a point being reasonable.
The landmarks are used in the same way as the reasonable points, that is to construct the
feature space. Notice that, in accordance with Definition 4.1, the labels of the landmarks
do not have to be known. We will be exploiting this advantage in the contribution that
we present in this chapter. Provided that enough landmarks are sampled, there exists
with high probability a linear classifier that obtains true error close to ε. This is formally
expressed in Theorem 4.2.

Theorem 4.2. (Balcan et al., 2008b) Let K be an (ε, γ, τ)-good similarity function for
a learning problem P . Let L = {x′1, . . . ,x′d} be a (potentially unlabeled) sample of d =
2
τ

(
log(2/δ) + 8 log(2/δ)

γ2

)
landmarks drawn from P . Consider the mapping φL : X → Rd

defined as follows: φL(x) = K(x,x′i), i ∈ {1, . . . , d}. Then, with probability 1− δ over the
random sample L, the induced distribution φL(P ) in Rd has a separator error at most ε+ δ

relative to L1 margin at least γ/2.

In other words, if K is (ε, γ, τ)-good according to Definition 4.1 and enough points are
available, there exists a linear separator α with error arbitrarily close to ε in the space φS .

The previous definition and theorem are expressed with respect to the error and L1 margin
violation. In practice, minimizing the number of violations for the zero-one loss is NP-hard.
The authors propose to overcome this limitation by using the hinge loss as a surrogate
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function. Making this change leads to a new form of Definition 4.1.

Definition 4.3. (Balcan et al., 2008b) K is a (ε, γ, τ)-good similarity function in hinge
loss for a learning problem P if there exists a random indicator function R(x) defining a
probabilistic set of "reasonable points" such that the following conditions hold:

1. We have
E(x,y)∼P

[
[1− yg(x)/γ]+

]
≤ ε,

where g(x) = E(x′,y′),R(x′) [y′K(x,x′)|R(x′)].

2. Prx′(R(x′)) ≥ τ .

Under this definition, Theorem 4.2 can be rewritten with respect to the hinge loss:

Theorem 4.4. (Balcan et al., 2008b) Let K be an (ε, γ, τ)-good similarity function in hinge
loss for a learning problem P. For any ε1 > 0 and 0 < δ < γε1/4 let L = {x′1,x′2, . . . ,x′d} be
a sample of d = 2

τ

(
log(2/δ) + 16 log(2/δ)

(ε1γ)2

)
landmarks drawn from P. Consider the mapping

φL : X → Rd, φLi (x) = K(x,x′i), i ∈ {1, . . . , d}. With probability 1 − δ over the random
sample L, the induced distribution φL(P ) in Rd, has a separator achieving hinge loss at
most ε+ ε1 at margin γ.

One should notice that the transition from the zero-one loss to the hinge loss marginally
increases the error of the separator. The procedure for finding the linear separator α ∈ Rd

that has low true risk involves two steps: first using du potentially unlabeled examples
as landmarks to construct the feature space, then using a new labeled set of size dl to
estimate α ∈ Rdu . Given a set of du landmarks L = {x′1, . . . ,x′du} and a labeled sample
of dl examples S = {(x1, y1), . . . , (xdl , ydl)}, the separator α can be found by solving the
following optimization problem:

min
α

dl∑
i=1

[
1−

du∑
j=1

αjyiK(xi,xj)
]

+

s.t.
du∑
j=1

|αj | ≤ 1/γ.

(4.1)

This formulation can be solved efficiently by linear programming. Furthermore, as it is
L1-constrained, tuning the value of γ will produce a sparse solution. Problem (4.1) can be
seen as an equivalent of an L1 SVM (Zhu et al., 2004). However, some important differences
distinguish the two approaches. As seen earlier, K is not required to be symmetric nor
PSD, thus generalizing over the notion of kernel. Moreover, the similarity function allows
to explicitly create the projection space containing the separator instead of considering an
implicit Hilbert space induced by a kernel.

The classification rule based on the similarity K and the separator α takes the following
form:
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y = sgn

du∑
j=1

αjK(x,xj). (4.2)

The framework of (ε, γ, τ)-good similarity functions allows to evaluate the performance that
can be expected of a global linear separator depending on how well a similarity function
satisfies Definition 4.1. Unfortunately, nothing is said about a potential method to design a
good similarity; the function is considered known and fixed. Bellet et al. (2012) have shown
how to directly optimize the (ε, γ, τ)-goodness of a bilinear similarity function, before
plugging it in Equation (4.2) to learn the classifier. Yet the similarity learning step is done
in a completely supervised way, while the setting in Balcan et al. (2008b) opens the door
to the use of unlabeled data. In the next sections, we present our contribution on learning
(ε, γ, τ)-good similarity functions from data.

4.3 Joint Similarity and Classifier Learning

In this section, we propose a novel similarity and classifier learning framework based on the
theory from Balcan et al. (2008b). We extend this framework to jointly learn the similarity
and the separator in a semi-supervised way.

Our goal is to optimize the (ε, γ, τ)-goodness of a given similarity function. To this
end, we have access to a labeled sample S = {(xi, yi)}dli=1 of dl examples defined over
Z = X × {−1; +1}) coming from an unknown probability distribution P , where X ⊆ Rd.
We are also given a set L = {x′j}duj=1 of du unlabeled examples also coming from X . These
represent the set of landmarks for building the feature space. Their selection will be
discussed into more detail in the experiments. Furthermore, let KM(x,x′) be a generic
similarity function, parameterized by the matrix M ∈ Rd×d, whose (ε, γ, τ)-goodness we
aim to optimize.

We assume that KM(x,x′) ∈ [−1; +1] and that ||x||2 ≤ 1, but all our developments and
results can directly be extended to any bounded similarities and datasets. Following the
definition of (ε, γ, τ)-goodness (Definition 4.3), we want to optimize the empirical goodness
of KM over the training sample with respect to a given landmarks set. The empirical risk
of a training instance z = (x, y) is thus:

`(M,α, z,L) =

1− y
du∑
j=1

αjK(x,xj)


+

.

Our goal here is to find the matrix M and the global separator α ∈ Rdu that minimize the
previous empirical loss over the whole sample S, with some guarantees on the generalization
error of the associated classifier. To this end, we propose the following regularized
formulation based on the joint optimization of the metric and the global separator:
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min
α,M

dl∑
i=1

[
1− yi

du∑
j=1

αjKM(xi,xj)
]

+
+ λ||M−R|| (4.3)

s.t.
du∑
j=1

|αj | ≤ 1/γ (4.4)

‖M‖F ≤ 1, (4.5)

where λ > 0 is a regularization parameter, and R ∈ Rd×d is a fixed matrix such that
‖R‖F ≤ 1. The notation || · || refers to a generic matrix norm, for instance L1, L2,1 or
Frobenius norms.

The novelty of this formulation is the joint optimization over M and α: by solving
Problem (4.3), we are learning the metric and the separator at the same time. One of its
significant advantages is that it extends the semi-supervised setting from the separator
learning step to the metric learning, and the two problems are solved using the same
data. This method can naturally be used in situations where one has access to few labeled
examples and some unlabeled ones: the labeled examples are used in this case to select the
unlabeled examples that will serve to classify new points.

JSL is fundamentally different from standard metric learning approaches presented in
Section 3.3.1, which are based on constraints over pairs and triplets of points. The
advantage of JSL over these methods is that the constraints on the pairs of points do
not need to be satisfied entirely, they only need to be met on average over the set of
landmarks. In other words, this formulation is less restrictive than pair or triplet-based
settings, and the constraints can be satisfied more easily. Moreover, as the number of
landmarks can be much smaller than the size of the training set, generating all the pairs
necessary for the computations is less expensive. As the set of landmarks is the same for
all the training points, the constraints are global, learning a pair of global similarity and
classifier. Constraint (4.4) takes into account the desired margin γ and is the same as
in Balcan et al. (2008b). Constraint (4.5) ensures that the learned similarity is bounded.
Once M and α have been learned, the associated binary classifier takes the form given in
Equation (4.2).

Regularization and prior knowledge The regularization term ‖M−R‖ serves to
limit the complexity of the learned similarity function KM and can also contain prior
knowledge about the form of the metric. The type of norm used and the regularization
parameter λ can push more or less strongly the value of M towards the bias: Frobenius
norm will ensure the values in M are not too far from those in R, while L1 norm might push
some of the entries of M to match exactly their counterparts in R. The prior knowledge
about the task or the form of the metric is encoded in the matrix R, in a way similar to
what is proposed in Davis et al. (2007). If the non parameterized version of the similarity
considered performs well, then a natural choice for R is the (rescaled) identity matrix 1

d · I.
This way, the learned matrix will preserve the good properties of the non parameterized
version and will improve it through learning. Another type of information that can be
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incorporated in R is the correlation between features. This can be achieved by setting
R to the inverse of the covariance matrix of the data, as used in the original version of
the Mahalanobis distance. Similar information can be encoded concerning the importance
of each feature per class, giving more weight to features that are more representative of
one of the classes {+1;−1}. We now propose a new method to capture the importance of
each feature for discriminating a certain class. This heuristic is based on the distributions
of each feature for each of the two classes through the Kullback–Leibler (KL) divergence.
We assume here that each feature k ∈ {1, . . . , d} follows a Gaussian distribution in each
class, with respective empirical means µk+ (class +1) and µk− (class −1) and standard
deviations σk+ (class +1) and σk− (class −1). We can compute the empirical value of the
KL divergence from a given sample as:

Dk
KL = log

(
σk+

σk−

)
+

1

2

(
σ2
k+

σ2
k−
− σ2

k−
σ2
k+

+
(µk− − µk+)2

σ2
k−

)
, 1 ≤ k ≤ d.

and the matrix R corresponds to diag(D1
KL, D

2
KL, · · · , Dd

KL).

Similarity functions In order to prove the versatility of JSL, we now propose three
examples of similarity functions that can be incorporated in our formulation.

Let K1
M be the bilinear form:

K1
M(x,x′) = xTMx′.

We also define K2
M:

K2
M(x,x′) = 1− (x− x′)TM(x− x′).

Similarly, let K3
M be:

K3
M(x,x′) = exp

(
−(x− x′)TM(x− x′)

2σ2

)
.

K1
M and K2

M are linear with respect to their arguments. K2
M is a straightforward transfor-

mation of the Mahalanobis distance into a similarity function. K3
M resembles the Gaussian

kernel and is based on the squared Mahalanobis distance. It introduces nonlinearity in
the form of a similarity that decreases fast when the distance between points increases
(under the parameters of M). Its additional parameter σ allows to control the width of
the "neighborhood" in which the pairs of points are scored high. All three similarities are
bounded under the constraints of JSL and have the advantage of keeping Problem (4.3)
convex. We will study into more detail the theoretical properties of these functions in the
following section, when we show how they impact the generalization bounds that we derive
for JSL. Note that we will make use of the first two similarity functions K1

M and K2
M in

our experiments.
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Solving JSL The properties of our framework depend on those of the chosen similarity
function and the regularizer. Choosing convex similarity function in M, like in the previous
examples, and a convex regularizer are sufficient enough properties to solve Problem (4.3)
efficiently. In this case, the formulation of JSL is convex for the metric, as well as
for the separator (but not necessarily jointly convex). Solving the problem does not
require semi-definite programming, like many metric learning approaches, even when using
Mahalanobis-based similarity functions (e.g. K2

M or K3
M), as the similarity is not PSD.

The hinge loss objective is convex, provided that KM is convex in M, but it is not
differentiable over all the domain. JSL can be solved in this form presented in Equation (4.3)
through stochastic approaches. We propose to rewrite its formulation by transforming the
sum of hinge losses in constraints and introducing slack variables ξ ∈ Rdl+ :

min
α,M,ξ

dl∑
i=1

ξi + λ||M−R||

s.t. 1− yi
du∑
j=1

αjKM(xi,xj) ≤ ξi, 1 ≤ i ≤ dl

du∑
j=1

|αj | ≤ 1/γ

‖M‖F ≤ 1.

(4.6)

We propose to solve Problem (4.6) by alternating optimization steps over M and α.
These steps can be performed efficiently by a standard convex optimization solver (e.g.
Mosek (ApS, 2015)). In terms of complexity, this formulation has d2 + dl + du variables
and only dl + 2 constraints, as opposed to standard metric learning approaches, where
the number of constraints is proportional to the number of example pairs or triplets, i.e.
quadratic or cubic in the number of examples. Notice that the number of landmarks does
not affect the size of the problem, as the number of constraints does not depend on the
size of L.

4.4 Theoretical Guarantees

In this section, we provide a theoretical analysis of JSL which allows us to establish
generalization bounds for our joint similarity learning formulation. The analysis holds
for a large class of similarity functions and regularizers. We derive two equivalent results
using two different frameworks. In Section 4.4.1, we prove the algorithmic robustness
of JSL and derive a PAC generalization bound based on this property. The theoretical
analysis in Section 4.4.2 is based on the Rademacher complexity and also allows to provide
a generalization bound. We compare these two approaches in Section 4.4.3.

For the purpose of the theoretical discussion to follow, let us rewrite the minimization
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Problem (4.3) with a more generalized notation of the loss function:

min
α,M

1

dl

dl∑
i=1

`(M,α, zi,L) + λ||M−R||, (4.7)

s.t.
du∑
j=1

|αj | ≤ 1/γ (4.8)

‖M‖F ≤ 1. (4.9)

Recall that `(M,α, zi,L)) =
[
1− yi

∑du
j=1 αjKM(xi,xj)

]
+

is the instantaneous loss es-

timated at point zi = (xi, yi). Therefore, the optimization Problem (4.7) under Con-
straints (4.8) and (4.9) reduces to minimizing the empirical risk

R`S(M,α) =
1

dl

dl∑
i=1

`(M,α, zi,L)

under regularization over the training set S. Let

R`P (M,α) = Ez∼P `(M,α, z,L)

be the true risk w.r.t. the unknown distribution P . The target of generalization analysis
for joint similarity learning is to bound the difference R`P (MS ,αS)−R`S(MS ,αS), where
(MS ,αS) is the solution of JSL.

Note that the similarity and the separator are learned under a fixed set of landmarks L.
This allows us to define the loss function and the risks with respect to individual examples
from the training set, without using pairs of points, as it is usually done in metric learning.
For this reason, we are able to derive our generalization bounds based on the standard
settings of both algorithmic robustness and Rademacher complexity analysis.

4.4.1 Algorithmic Robustness of JSL

We now present a theoretical analysis of our approach through the framework of algorithmic
robustness. Our main result in this section is the derivation of a generalization bound
(Theorem 4.9). Recall that, roughly speaking, an algorithm is robust if for any test
example z′ falling in the same subset as a training example z, the gap between the losses
associated with z and z′ is bounded. We first prove that JSL is robust, then we derive
a PAC generalization bound based on this property. We now introduce the definition of
l-lipschitzness, which will allow us to bound the value of the loss function and prove the
robustness of JSL.

Definition 4.5 (l-lipschitz continuity). A similarity function KM(x,x′) parameterized by
a matrix M is l-lipschitz with respect to its first argument if for any x1,x2, we have:

KM(x1,x
′)−KM(x2,x

′) ≤ l ‖x1 − x2‖ .
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The lipschitz continuity bounds the value of a function through the constant representing
the slope of the function between its input points. Intuitively, it means that the values
of the function vary in a controlled way over a limited input range. Going back to our
examples of similarity functions, we prove their l-lipschitzness hereafter.

Lemma 4.6. The similarity functions K1
M, K2

M and K3
M defined previously have the

following lipschitzness properties respectively:

• K1
M(x,x′) is 1-lipschitz w.r.t. its first argument.

• K2
M(x,x′) is 4-lipschitz w.r.t. its first argument.

• K3
M(x,x′) is l-lipschitz w.r.t. its first argument with l = 2

σ2

(
exp

(
1

2σ2

)
− exp

( −1
2σ2

))
.

The proof of Lemma 4.6 is provided in Appendix B.1. With this property in mind, we can
now prove the algorithmic robustness of JSL in the following theorem.

Theorem 4.7 (Algorithmic robustness of JSL). Given a partition of Z into M subsets
{Ci} such that z = (x, y) and z′ = (x′, y′) ∈ Ci and y = y′, and provided that KM(x,x′) is
l-lipschitz w.r.t. its first argument, the optimization Problem (4.7) with Constraints (4.8)
and (4.9) is (M, ε(S))-robust with ε(S) = 1

γ lρ, where ρ = supx,x′∈Ci ||x− x′||.

Proof.

∣∣`(M,α, z)− `(M,α, z′)
∣∣ =

∣∣∣∣∣∣
1−

du∑
j=1

αjyKM(x,xj)


+

−

1−
du∑
j=1

αjy
′KM(x′,xj)


+

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
du∑
j=1

αjy
′KM(x′,xj)−

du∑
j=1

αjyKM(x,xj)

∣∣∣∣∣∣ (4.10)

=
∣∣ du∑
j=1

αj(KM(x′,xj)−KM(x,xj))
∣∣

≤
du∑
j=1

|αj | ·
∣∣KM(x′,xj)−KM(x,xj)

∣∣ (4.11)

≤
du∑
j=1

|αj | · l||x− x′|| ≤ 1

γ
lρ (4.12)

We obtain Inequality (4.10) from the 1-lipschitzness of the hinge loss; Inequality (4.11)
comes from triangle inequality; the first inequality on line (4.12) is due to the l-lipschitzness
of KM(x,xj) w.r.t. its first argument, and the result follows from Condition (4.8). Setting
ρ = supx,x′∈Ci ||x− x′||1, we get the theorem.

We now give a PAC generalization bound on the true loss making use of the previous
robustness result. We present the following concentration inequality that allows one to
capture statistical information coming from the different regions of the partition of Z.
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Proposition 4.8. (van der Vaart & Wellner, 1996) Let (|N1|, . . . , |NM |) be an i.i.d.
multinomial random variable with parameters dl =

∑M
i=1 |Ni| and (p(C1), . . . , p(CM )). By

the Bretagnolle-Huber-Carol inequality we have:

Pr

{
M∑
i=1

∣∣∣∣ |Ni|
dl
− p(Ci)

∣∣∣∣ ≥ λ
}
≤ 2M exp

(−dlλ2

2

)
,

hence with probability at least 1− δ,

M∑
i=1

∣∣∣∣Ni

dl
− p(Ci)

∣∣∣∣ ≤
√

2M ln 2 + 2 ln(1/δ)

dl
.

We are now able to present the generalization bound for JSL in the following theorem.

Theorem 4.9 (Generalization bound using algorithmic robustness). Considering that
Problem (4.7) is (M, ε(S))-robust, that (MS ,αS) is its solution learned from sample S and
that KM is l-lipschitz w.r.t. to its first argument, for any δ > 0 with probability at least
1− δ, we have:

|R`P (MS ,αS)−R`S(MS ,αS)| ≤ 1

γ
lρ+B

√
2M ln 2 + 2 ln(1/δ)

dl
,

where B = 1 + 1
γ is an upper bound of the loss ` and ρ = supx,x′∈Ci ||x− x′||.

The proof of Theorem 4.9 follows the one described in Xu & Mannor (2010) and is presented
in Appendix B.1. Note that the cover radius ρ can be arbitrarily small at the expense of
larger values of M . As M appears in the second term, decreasing to 0 when dl goes to
infinity, this bound provides a standard O(1/

√
dl) asymptotic convergence.

As one can notice, our main theorem strongly depends on the l-lipschitzness of the similarity
function. Plugging the value of l in the bound in Theorem 4.9, we obtain consistency results
for Problem (4.7) using a specific similarity. As the gap between empirical and true loss
presented in Theorem 4.9 is proportional with the l-lipschitzness of each similarity function,
we would like to keep this parameter as small as possible. Concerning our examples of
similarity functions, we notice that the generalization bound is tighter for K1

M than for
K2

M. The bound for K3
M depends on the additional parameter σ, that adjusts the influence

of the similarity value w.r.t. the distance to the landmarks.

4.4.2 Uniform Convergence of JSL Using the Rademacher Complexity

In this section, we provide an analysis of JSL based on the uniform convergence framework
and the Rademacher complexity, before deriving our main result, a generalization bound
for JSL based on these notions (Theorem 4.12).

We start by introducing the definition of what we will consider admissible similarity
functions for this analysis. Intuitively, this notion is similar to l-lipschitzness in the sense
that both of them bound the values of the similarity function w.r.t. its arguments. If
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for l-lipschitzness the bound is computed as a function of the variation of the input, the
admissibility takes into account the norms of the examples, as well as the parameters of
the metric. Formally, we define admissibility as:

Definition 4.10. A pairwise similarity function KM : X ×X → [−1, 1], parameterized by
a matrix M ∈ Rd×d, is said to be (β, c)-admissible if, for any matrix norm || · ||, there exist
β, c ∈ R such that ∀x,x′ ∈ X ,

|KM(x,x′)| ≤ β + c ·
∥∥x′xT∥∥ · ‖M‖ .

We now prove the (β, c) admissibility of our example similarity functions.

Lemma 4.11. The similarity functions K1
M, K2

M and K3
M defined previously have the

following admissibility properties respectively:

• K1
M(x,x′) is (0, 1)-admissible, that is

|K1
M(x,x′)| ≤ ||x′xT || · ||M||.

• K2
M(x,x′) is (1, 4)-admissible, that is

|K2
M(x,x′)| ≤ 1 + 4 · ||x′xT || · ||M||.

• K3
M(x,x′) is

(
exp(−2/σ2), 0

)
-admissible, that is

|K3
M(x,x′)| ≤ exp

(
− 2

σ2

)
.

The proof of Lemma 4.11 is provided in Appendix B.1.

For any B,M ∈ Rn×d and any matrix norm || · ||, its dual norm || · ||∗ is defined, for any
B, by ||B||∗ = sup||M||≤1 tr(BTM), where tr(·) denotes the trace of a matrix. Denote
X∗ = supx,x′∈X ||x′xT ||∗. We can now state our generalization bound.

Theorem 4.12 (Generalization bound using Rademacher complexity). Let (MS ,αS) be
the solution to the joint Problem (4.7) and KM a (β, c)-admissible similarity function.
Then, for any 0 < δ < 1, with probability at least 1− δ, the following holds:

|R`P (MS ,αS)−R`S(MS ,αS)| ≤ 4Rdl

(
c

γ

)
+

(
β + cX∗

γ

)√
2 ln 1

δ

dl
,

where X∗ = supx,x′∈X ||x′xT ||∗.

Theorem 4.12 proves that learning M and α in a joint manner from a training set
minimizes the generalization error, as the latter is bounded by the empirical error of
our joint regularized formulation. We discuss into more detail the bound in the next
section, where we also compare it against the similar result obtained using the algorithmic
robustness of JSL. The proof of Theorem 4.12 makes use of the Rademacher symmetrization
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theorem and contraction property (Theorem 4.13 and Lemma 4.14), that we present in the
following.

Theorem 4.13. (Boucheron et al., 2005) Let Rn(F) be the Rademacher average over F
as presented in Definition 2.12. We have:

E

[
sup
f∈F

(
Ef(S)− 1

n

n∑
i=1

f(zi)

)]
≤ 2Rn(F).

Lemma 4.14. (Ledoux & Talagrand, 1991) Let F be a class of uniformly bounded real-
valued functions on (Ω, µ) and m ∈ N. If for each i ∈ {1, . . . ,m}, φi : R→ R is a function
having a Lipschitz constant ci, then for any {xi}i∈Nm ,

Eε

(
sup
f∈F

∑
i∈Nm

εiφi(f(xi))

)
≤ 2Eε

(
sup
f∈F

∑
i∈Nm

ciεif(xi)

)
.

We are now able to present the proof of Theorem 4.12.

Proof of Theorem 4.12. Observe thatRS(MS ,αS)−RP (MS ,αS) ≤ supM,α [RS(M,α)−RP (M,α)],
as (MS ,αS) is the solution of Problem 4.7. Also, let S = (z1, . . . , zk, . . . , zdl) and
S̃ = (z1, . . . , z̃k, . . . , zdl), 1 ≤ k ≤ dl, be two close samples that only differ by one
instance zk. Then, we have:

∣∣∣∣∣sup
M,α

[RS(M,α)−RP (M,α)]− sup
M,α

[
RS̃(M,α)−RP (M,α)

]∣∣∣∣∣
≤ sup

M,α

∣∣RS(M,α)−RS̃(M,α)
∣∣

=
1

dl
sup
M,α

∣∣∣∣∣∣
∑

z=(x,y)∈S

1−
du∑
j=1

αjyKM(x,xj)


+

−
∑

z̃=(x̃,ỹ)∈S̃

1−
du∑
j=1

αj ỹKM(x̃,xj)


+

∣∣∣∣∣∣
=

1

dl
sup
M,α

∣∣∣∣∣∣
1−

du∑
j=1

αjykKM(xk,xj)


+

−

1−
du∑
j=1

αj ỹkKM(x̃k,xj)


+

∣∣∣∣∣∣
=

1

dl
sup
M,α

∣∣∣∣∣∣
du∑
j=1

αj ỹkKM(x̃k,xj)−
du∑
j=1

αjykKM(xk,xj)

∣∣∣∣∣∣ (4.13)

≤ 2

dl
sup
M,α

∣∣∣∣∣∣
du∑
j=1

αjy
max
k KM(xmaxk ,xj)

∣∣∣∣∣∣ where zmaxk = arg max
z=(x,y)∈{zk,z̃k}

yKM(x,xj)

≤ 2

dl
sup
M,α


du∑
j=1

|αj | · |ymaxk | · |KM(xmaxk ,xj)|


≤ 2

dl

(
β + cX∗

γ

)
(4.14)

Inequality (4.13) comes from the 1-lipschitzness of the hinge loss; Inequality (4.14) comes
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from Constraint (4.9), ||M|| ≤ 1 and the (β, c)-admissibility of KM. Applying McDiarmid’s
inequality to the term supM,α [RS(M,α)−RP (M,α)], with probability 1− δ, we have:

sup
M,α

[RS(M,α)−RP (M,α)] ≤ ES sup
M,α

[RS(M,α)−RP (M,α)] +

(
β + cX∗

γ

)√
2 ln 1

δ

dl
.

In order to bound the gap between the true loss and the empirical loss, we now need to
bound the expectation term on the right hand side of the above equation.

ES sup
M,α

[RS(M,α)−RP (M,α)]

=ES sup
M,α

 1

dl

dl∑
i=1

1−
du∑
j=1

αjyiKM(xi,xj)


+

−RP (M,α)


≤2ES,σ sup

M,α

 1

dl

dl∑
i=1

σi

1−
du∑
j=1

αjyiKM(xi,xj)


+

 (4.15)

≤4ES,σ sup
M,α

∣∣∣∣∣∣ 1

dl

dl∑
i=1

σiyi

du∑
j=1

αjKM(xi,xj)

∣∣∣∣∣∣ (4.16)

≤4

(
c

γ

)
ES,σ sup

x̃

∣∣∣∣∣
∣∣∣∣∣ 1

dl

dl∑
i=1

σiyixix̃
T

∣∣∣∣∣
∣∣∣∣∣
∗

= 4Rdl

(
c

γ

)
. (4.17)

We obtain Inequality (4.15) by applying Theorem 4.13, while Inequality (4.16) comes from
the use of Lemma 4.14. The Inequality on line (4.17) makes use of the (β, c)-admissibility
of the similarity function KM (Definition 4.10). Combining Inequalities (4.14) and (4.17)
completes the proof of the theorem.

4.4.3 Discussion

We will now comment on the generalization bounds obtained for JSL (Theorems 4.9
and 4.12) and the two methods we have used to derive them.

The bound derived in Theorem 4.9 using the algorithmic robustness of JSL holds for all
l-lipschitz similarity functions and all regularization norms. The latter characteristic comes
from the fact that algorithmic robustness does not take into account at all the regularizer,
facilitating the development of generic frameworks. Moreover, almost no algorithm-specific
argument is needed to derive this type of bounds. This can also be seen as a downside,
as the lack of information about how the hypothesis is learned yields very general results,
producing loose consistency bounds. For the same reason, algorithmic robustness bounds
are mostly similar even from one method to another. On the other hand, as robustness is
based on covering numbers, the bound in Theorem 4.9 is parameterized by the number of
parts in the partitioning of the space M and the size of each part ρ. As we have shown,
there is a trade-off between these two values, both of which make the bound looser. In
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practice, these values are sometimes hard to estimate.

The bound derived in Theorem 4.12 depends on the (β, c)-admissibility of the similarity
function, which is in some sort equivalent to the l-lipschitz constraint for algorithmic
robustness. As we have seen in Section 2.7.2.2, the Rademacher complexity, unlike the VC
dimension, is data-dependent and can integrate information about the task. Moreover, the
Rademacher complexity of a given task can be estimated from a single training sample S.
Usually, Rademacher complexity-based bounds implicitly integrate the regularizer, as it is
common practice to bound the matrix M using this term. This is not the case for JSL, as
‖M‖F is bounded by a constant, making our bound independent from R and the chosen
matrix norm.

When comparing the two generalization bounds derived for JSL, we notice that they both
have the same order of convergence, that is O( 1√

dl
) w.r.t. the size of the training set,

which is the standard rate for PAC generalization bounds. On the other hand, none of the
bounds manifests any dependence on the size of the landmarks set. Moreover, they are
also independent of the dimensionality of the data. This property is due to the fact that
‖M‖F is bounded by a constant. For the same reason, both bounds are agnostic to the
regularization, which allows them to cover different types of norms for the term ‖M−R‖,
but makes them more loose as a downside. In both cases, the gap between the empirical
and the true risk is inversely proportional to the margin γ, implying that the larger the
margin (i.e. the separation between classes), the better the empirical risk estimates the
true error. An important difference between the bounds resides in their respective first
terms. Considering an infinite sample (dl →∞), both terms of the Rademacher complexity-
based bound go to zero (to see this, recall Definition 2.11 for the empirical Rademacher
complexity). This is not the case for the bound based on algorithmic robustness: its first
term is constant with respect to the size of the sample, making in our case the Rademacher
complexity bound more informative.

To conclude, the two consistency bounds we have presented for JSL are mostly equivalent,
with the same rate of convergence and dependence on similar parameters. Analyses based
on Rademacher complexity can yield tighter bounds, as they integrate more information
specific to the task, but are in practice harder to derive than their equivalent based on
algorithmic robustness.

4.5 Learning a Diagonal Metric

In this section, we introduce a modified version of JSL which allows to learn a similarity
function parameterized by a diagonal matrix at the same time as a linear classifier. As JSL
is adapted for the case of small amounts of labeled information, the number of available
examples is not always sufficient for learning the d2 parameters of a full matrix. We thus
propose JSL-diag, where the number of parameters to be learned for the similarity function
is d. JSL-diag takes the following form:
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min
α,M

dl∑
i=1

[
1−

du∑
j=1

αjyiKM(xi,xj)
]

+
+ λ ‖M−R‖

s.t.
du∑
j=1

|αj | ≤ 1/γ

M diagonal, |Mkk| ≤ 1, 1 ≤ k ≤ d,

(4.18)

where λ > 0 is a regularization parameter, and R ∈ Rd×d is now a fixed diagonal matrix
such that ‖R‖ ≤ d. The same heuristics for choosing R and the same similarity functions
can be use for JSL-diag as for JSL. The semantics behind setting the off-diagonal values of
M to zero is that the similarity function will not take into consideration the correlation
between features. In practice, it has been shown that the change in performance is marginal
with respect to the case of a full matrix (Qamar & Gaussier, 2009a). When introducing
slack variables, the diagonal form of M reduces the number of variables of the problem
from d2 +dl+du to only d+dl+du, thus making it linear in the parameters. The constraint
however does not change the number of constraints, which remains dl + 2. JSL-diag is
solved similarly to JSL, through alternating optimization steps over M and α. We will use
JSL-diag in the experimental section.

From a theoretical perspective, JSL-diag has the same properties as JSL, thus making
it possible to derive similar generalization bounds. The only distinction comes from the
constraint over M changing from ‖M‖F ≤ 1 in the case of JSL to |Mkk| ≤ 1, 1 ≤ k ≤ d

for JSL-diag. The bound derived using algorithmic robustness Theorem 4.9 is the same for
JSL and JSL-diag, as it is based on the partitioning of the space. On the other hand, we
can rewrite Theorem 4.12 for JSL-diag as follows. Note that the proofs are the same as for
JSL; we will thus omit them.

Theorem 4.15. Let (MS ,αS) be the solution to the joint problem (4.18) and KM a
(β, c)-admissible similarity function. Then, for any 0 < δ < 1, with probability at least
1− δ, the following holds:

|R`P (MS ,αS)−R`S(MS ,αS)| ≤ 4Rdl

(
cd

γ

)
+

(
β + cX∗d

γ

)√
2 ln 1

δ

dl
,

where X∗ = supx,x′∈X
∥∥x′xT∥∥∗.

Changing the constraint on the bound of the norm of M makes the generalization bound in
Theorem 4.15 less tight. Notice that the norm of M is now bounded by d, not 1 like in the
case of JSL. As a consequence, the consistency bound for JSL-diag depends linearly on d.

4.6 Experimental Validation

The state of the art in metric learning is dominated by algorithms designed to work in a
purely supervised setting. Furthermore, most of them optimize a metric adapted to k-NN
classification (e.g. LMNN, ITML), while our work is designed for finding a global linear
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Table 4.1: Properties of the datasets used in the experimental study.

Balance Ionosphere Iris Liver Pima Sonar Wine

# Instances 625 351 150 345 768 208 178
# Dimensions 4 34 4 6 8 60 13
# Classes 3 2 3 2 2 2 3

separator. For these reasons, it is difficult to propose a totally fair comparative study. In this
section, we first evaluate the effectiveness of JSL-diag with different settings. Secondly, we
extensively compare it with state-of-the-art algorithms from different categories (supervised,
k-NN oriented). Lastly, we study the impact of the quantity of available labeled data on
our method. We conduct the experimental study on 7 classic datasets taken from the
UCI Machine Learning Repository (Lichman, 2013), both binary and multi-class. Their
characteristics are presented in Table 4.1. These datasets are widely used for metric
learning evaluation.

4.6.1 Experimental setting

Compared methods In order to provide a comparison as complete as possible, we
propose to study two main families of approaches1:

1. Linear classifiers – in this family, we consider the following methods:

• BBS, corresponding to Problem (4.1) and discussed before;

• SLLC (Bellet et al., 2012), an extension of BBS in which a similarity is learned
prior to be used in the BBS framework;

• JSL-diag, the joint learning framework proposed in this study learning a diagonal
similarity;

• Linear SVM with L2 regularization, which is the standard approach for linear
classification.

2. Nearest neighbor approaches – in this family, we consider the methods:

• Standard 3-nearest neighbor classifier (3-NN) based on the Euclidean distance;

• ITML (Davis et al., 2007), which learns a Mahalanobis distance that is used
here in 3-NN classification;

• LMNN with a full matrix and LMNN with a diagonal matrix (LMNN-diag) (Wein-
berger & Saul, 2008, 2009), also learning a Mahalanobis distance used here in
3-NN classification;

• LRML (Hoi et al., 2008, 2010); LRML also learns a Mahalanobis distance used
in 3-NN classifier, but in a semi-supervised setting. This method has the closest

1For all the methods, we used the code provided by the authors.
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setting to JSL (even though one is learning a linear separator and the other
only a distance).

All classifiers are used in their binary version, in a one-vs-all setting when the number
of classes is greater than two. BBS, SLLC and JSL rely on the same classifier from
Equation (4.2), even though learned in different ways. We solve BBS and JSL using
projected gradient descent.

Data processing and parameter settings All features are centered around zero and
scaled to ensure ||x||2 ≤ 1, as this constraint is necessary for some of the algorithms. We
randomly choose 15% of the data for validation purposes, and another 15% as a test set.
The training set and the unlabeled data are chosen from the remaining 70% of examples
not employed in the previous sets. In order to illustrate the classification using a restricted
quantity of labeled data, the number of labeled points is limited to 5, 10 or 20 examples
per class, as this is usually a reasonable minimum amount of annotation to rely on. The
number of landmarks is either set to 15 points or to all the points in the training set (in
which case their label is not taken into account). These two settings correspond to two
practical scenarios: one in which a relatively small amount of unlabeled data is available,
and one in which a large amount of unlabeled data is available. When only 15 unlabeled
points are considered, they are chosen from the training set as the nearest neighbor of
the 15 centroids obtained by applying K-means++ clustering with k = 15. All of the
experimental results are averaged over 10 runs, for which we compute a 95% confidence
interval. We tune the following parameters by cross-validation: γ, λ ∈ {10−4, . . . , 10−1} for
BBS and JSL (λ only for the second), λITML ∈ {10−4, . . . , 104}, choosing the value yielding
the best accuracy. For SLLC, we tune γ, β ∈ {10−7, . . . , 10−2}, λ ∈ {10−3, . . . , 102}, as
done by the authors, while for LRML we consider γs, γd, γi ∈ {10−2, . . . , 102}. For LMNN,
we set µ = 0.5, as done in Weinberger & Saul (2009).

4.6.2 Experimental results

Analysis of JSL We first study here the behavior of the proposed joint learning frame-
work w.r.t. different families of similarities and regularization functions (choice of R and
|| · ||). In particular, we consider two types of similarity measures: bilinear (cosine-like)
similarities of the form K1

M(x,x′) = xTMx′ and similarities derived from the Mahalanobis
distance K2

M(x,x′) = 1− (x− x′)TM(x− x′). For the regularization term, R is either set
to the identity matrix (JSL-I), or to the approximation of the Kullback–Leibler divergence
(JSL-KL) discussed in Section 4.3. As mentioned above, these two settings correspond to
different prior knowledge one can have on the problem. In both cases, we consider L1 and
L2 regularization norms. We thus obtain 8 settings, that we compare in the situation where
few labeled points are available (5 points per class), using a small amount (15 instances) of
unlabeled data or a large amount (the whole training set) of unlabeled data. The results
of the comparisons are reported in Tables 4.2 and 4.3.

As one can note from Table 4.2, when only 15 points are used as landmarks, K2
M obtains

better results in almost all of the cases, the difference being more important on Iris, Pima
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Table 4.2: Classification accuracy (%) of JSL-diag with confidence interval at 95%, 5
labeled points per class, 15 unlabeled landmarks.

Sim. Reg. Balance Ionosphere Iris Liver Pima Sonar Wine

I-L1 85.2±3.0 85.6±2.4 76.8±3.2 63.3±6.2 71.0±4.1 72.9±3.6 91.9±4.2
K1

M I-L2 85.1±2.9 85.6±2.6 76.8±3.2 63.1±6.3 71.0±4.0 73.2±3.8 91.2±4.5
KL-L1 84.9±2.9 85.0±2.6 77.3±2.7 63.9±5.5 71.0±4.0 72.9±3.6 90.8±4.7
KL-L2 85.2±3.0 85.8±3.3 76.8±3.2 62.9±6.4 71.3±4.3 74.2±3.8 90.0±5.4
I-L1 87.2±2.9 87.7±2.6 78.6±4.6 64.7±5.6 75.1±3.5 73.9±5.7 80.8±9.5

K2
M I-L2 86.8±3.0 87.7±2.8 75.9±5.7 64.3±5.4 75.6±3.6 74.8±5.8 80.8±8.6

KL-L1 87.2±2.9 87.3±2.4 78.6±4.6 62.9±5.6 75.0±3.7 75.5±6.2 79.6±11.8
KL-L2 87.1±2.7 85.8±3.3 79.1±5.4 64.9±5.9 75.6±3.4 77.1±5.2 79.6±9.7

Table 4.3: Classification accuracy (%) of JSL-diag with confidence interval at 95%, all
points used as landmarks.

Sim. Reg. Balance Ionosphere Iris Liver Pima Sonar Wine

I-L1 85.8±2.9 88.8±2.5 74.5±3.1 65.5±4.5 71.4±3.8 70.3±6.6 85.8±5.0
K1

M I-L2 85.8±2.9 87.7±2.7 74.5±3.5 64.7±5.5 71.7±4.1 68.7±6.7 84.6±5.5
KL-L1 85.6±3.1 87.9±3.4 75.0±3.5 65.3±4.9 71.6±4.2 70.3±6.8 85.4±5.3
KL-L2 85.1±3.1 88.5±3.7 75.9±3.4 65.1±4.8 72.1±4.2 71.9±6.7 86.5±6.0
I-L1 85.9±2.3 90.4±2.2 71.8±6.1 67.3±3.5 73.1±3.5 72.9±4.2 81.5±8.4

K2
M I-L2 86.2±2.5 90.6±2.2 73.2±6.6 68.6±3.3 73.3±3.2 73.2±4.2 82.7±9.0

KL-L1 85.8±2.6 89.4±2.0 72.7±5.5 67.5±3.8 73.8±3.5 71.0±4.1 80.0±7.4
KL-L2 85.9±2.4 89.6±2.2 74.5±6.2 68.4±3.6 73.1±3.8 72.3±4.8 80.0±11.5

and Sonar. The noticeable exception to this better behavior of K2
M is Wine, for which

cosine-like similarities outperform Mahalanobis-based similarities by more than 10 points.
A similar result was also presented in Qamar et al. (2008). The difference between the
use of the L1 or L2 norms is not as marked, and there is no strong preference for one or
the other, even though the L2 norm leads to slightly better results in average than the L1

norm. Regarding the regularization matrix R, again, the difference is not strongly marked,
except maybe on Sonar. In average, regularizing through the Kullback-Leibler divergence
leads to slightly better results than regularizing through the identity matrix.

When all points are used as landmarks (Table 4.3), similar conclusions can be drawn regard-
ing the similarity functions and the norms used. However, in that case, the regularization
based on the identity matrix yields better results than the one based on the KL divergence.
It is important to note also that the overall results are in general lower than the ones
obtained when only 15 points are used as landmarks. We attribute this effect to the fact
that one needs to learn more parameters (via α), whereas the amount of available labeled
data is the same.

From the above analysis, we focus now on two JSL-diag based methods: JSL-15 with K2
M,
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Figure 4.2: Classification accuracy (%) with confidence interval at 95% with 5 labeled
points per class.

L2 norm and R = KL when 15 points are used as landmarks, and JSL-all with K2
M, L2

norm and R = I when all the points are used as landmarks.

Comparison of the different methods We now study the performance of our method,
compared to state-of-the-art algorithms. For this, we consider JSL-15 and JSL-all with
5, 10, respectively 20 labeled examples per class. As our methods are tested using the
similarity based on the Mahalanobis distance, we use the Euclidean distance for BBS to
ensure fairness.

Figure 4.2 presents the average accuracy per dataset obtained with 5 labeled points per
class. In this setting, JSL outperforms the other algorithms on 5 out of 7 datasets and
has similar performances on one other. The exception is the Wine dataset, where none of
the JSL settings yields competitive results. As stated before, this is easily explained by
the fact cosine-similarities are more adapted for this dataset. Even though JSL-15 and
JSL-all perform the same when averaged over all datasets, the difference between them is
marked on some datasets: JSL-15 is considerably better on Iris and Sonar, while JSL-all
significantly outperforms JSL-15 on Ionosphere and Liver. Averaged over all datasets
(Table 4.4), JSL obtains the best performance in all configurations with a limited amount
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Table 4.4: Average classification accuracy (%) over all datasets with confidence interval at
95%.

Method 5 pts./cl. 10 pts./cl. 20 pts./cl.

3-NN 64.6±4.6 68.5±5.4 70.4±5.0
LMNN-diag 65.1±5.5 68.2±5.6 71.5±5.2
LMNN 69.4±5.9 70.9±5.3 73.2±5.2
ITML 75.8±4.2 76.5±4.5 76.3±4.8
SVM 76.4±4.9 76.2±7.0 77.7±6.4
BBS 77.2±7.3 77.0±6.2 77.3±6.3
SLLC 70.5±7.2 75.9±4.5 75.8±4.8
LRML 74.7±6.2 75.3±5.9 75.8±5.2
JSL-15 78.9±6.7 77.6±5.5 77.7±6.4
JSL-all 78.2±7.3 76.6±5.8 78.4±6.7

(a) Ionosphere (b) Pima

Figure 4.3: Classification accuracy w.r.t. the number of labeled points with 15 landmarks.

of labeled data, which is particularly the setting that our method is designed for. The
values in bold are significantly better than the rest of their respective columns, confirmed
by a one-sided Student t-test for paired samples with a significance level of 5%.

Impact of the amount of labeled data As an illustration of the methods’ behavior
when the level of supervision varies, Figure 4.3 presents the accuracies on two representative
datasets, Ionosphere and Pima, with an increasing number of labeled examples. In both
cases, the best results are obtained by JSL (and more precisely JSL-15) when less than
50% of the training set is used. This is in agreement with the results reported in Table 4.4.
The results of JSL are furthermore comparable only to BBS for the Pima dataset. Lastly,
the accuracy of JSL improves slightly when adding more labeled data, and the results on
the whole training set are competitive w.r.t. the other algorithms.
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4.7 Conclusion

In this chapter, we have studied the problem of learning similarities in the situation
where few labeled (and potentially few unlabeled) examples are available. To do so, we
have developed a semi-supervised framework extending the (ε, γ, τ)-good of Balcan et al.
(2008b), in which the similarity function and the classifier are learned at the same time.
To our knowledge, this is the first time that such a framework is provided. The joint
learning of the similarity and the classifier enables one to benefit from unlabeled data
for both the similarity and the classifier. Our framework is generic and can be used with
many different similarity functions and regularizers, some of which are able to provide
sparsity for the learned metric in addition to that of the classifier. As JSL optimizes
the (ε, γ, τ)-goodness of the learned similarity, it also benefits from the guarantees of this
framework, i.e. the bound on the true error of the linear classifier. We have also showed
that the proposed method was theoretically well-founded through the analyses based on
algorithmic robustness and Rademacher complexity, each resulting in a bound on the
generalization error of the learned parameters. Lastly, the experiments we have conducted
on standard metric learning datasets show that our approach is indeed well-suited for
learning a diagonal metric from few labeled data, and outperforms state-of-the-art metric
learning approaches in that situation.

Future work could cover a kernelized version of our technique to learn more efficient
similarities and classifiers in a nonlinear feature space, as well as learning local metrics
and a combination of them in a coherent framework. One could also consider introducing
nonlinearity in JSL through the choice of a nonlinear similarity function. In the case of
JSL, we have used the classic algorithm K-means to choose the landmarks that are used for
the construction of the features space. An interesting line of research could be to analyze
multiples heuristics for landmarks selection, as criteria different from data density might
yield better performance.
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Chapter 5

Learning Similarities for Time
Series Classification

Chapter abstract

Dynamic time warping (DTW) is the most well-known algorithm for measuring
the similarity between two time series by finding the best alignment between them.
Unfortunately, as we have seen in Chapter 3, not much research effort has been put
into adapting it to multivariate time series, and even less into improving it by learning.
In this chapter, we propose a novel method for learning similarities based on DTW,
in order to improve time series classification. In this contribution also we makes use
of the (ε, γ, τ)-good similarities learning framework (Balcan et al., 2008b), providing
guarantees on the performance of a linear classifier built from the learned metric.
Proving that our method has uniform stability allows us to derive the first consistency
bound for a metric learned from temporal data. We perform experiments on real-world
multivariate time series datasets, comparing our method to state of the art approaches.
The experimental study shows that the proposed approach is efficient, while yielding
sparse classifiers.

The material of this chapter is based on the following technical report:

Maria-Irina Nicolae, Éric Gaussier, Amaury Habrard, and Marc Sebban. Similarity
Learning for Time Series Classification. Technical report, University of Saint-Etienne,
2016. arXiv:1610.04783. To be submitted to the journal track of ECML/PKDD 2017
and MLJ.

5.1 Introduction

Dynamic time warping has shown good results for time series tasks, receiving important
attention from the research community. As presented in Section 3.3.2, metric learning for
time series in general, and for the multivariate case in particular, has only been explored
by a limited number of studies. The vast majority of methods are constructed from local
constraints and designed for k-NN classification, following the orientation of the time series
analysis community. The question remains if classifiers and metrics inferred from global
constraints (e.g. linear) can be effective on time series. Often learning a Mahalanobis
distance, existing methods impose a PSD constraint which is computationally expensive
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and could be avoided by choosing a different class of functions. Moreover, the subject of
learning custom metrics for time series has been addressed by adapting standard metric
learning solutions to incorporate the time dimension (e.g. LMNN (Weinberger & Saul,
2009), ITML (Davis et al., 2007)). This often implies that the optimal DTW alignment
has to be computed for all pairs of points, but considering the quadratic complexity of this
procedure, the final computational cost is elevated. Additionally, the theoretical foundation
of metric learning for time series classification has never been studied.

In this chapter, we address the limitations of state of the art methods by introducing
Similarity Learning for Time Series (SLTS). We place ourselves once more in the framework
of (ε, γ, τ)-good similarity functions. Our approach is to consider the optimal DTW
alignment under a standard metric, but only w.r.t. a set of landmarks of limited size.
The formulation we propose is convex and directly optimizes the (ε, γ, τ)-goodness of
a bilinear similarity based on the optimal alignments, thus being able to guarantee its
performance in linear classification. Our setting is not limited to the similarity function
that we propose, but can be adapted to other forms of metrics. We provide a comprehensive
theoretical analysis of SLTS based on the uniform stability framework. By only being
able to incorporate strongly convex regularizers, the uniform stability is less general than
algorithmic robustness or Rademacher complexity, but allows the derivation of tighter
bounds. This is necessary for SLTS, as the method deals with complex data, which has an
additional time dimension. The theoretical study in this chapter results in the derivation of
a generalization bound for the learned metric. To our knowledge, SLTS is the first metric
learning approach for multivariate time series coming with theoretical guarantees. The
experiments we perform cover multiple aspects. We show examples of visualizations of the
similarity space to prove that the learned metric has the capacity to discriminate classes.
The comparison against state of the art approaches proves that SLTS is efficient and
obtains good performance. We additionally study and test diverse heuristics for choosing
the set of landmarks on which the construction of the similarity space is based.

Note that an approach similar to SLTS has been proposed in Bellet et al. (2011) for the
problem of learning a similarity for sequence alignment. More precisely, their purpose
is to learn the cost matrix necessary for computing the edit distance, i.e. the script of
operations which transform a string into another. Computing the DTW for time series
is equivalent to determining the Levenshtein distance (Levenshtein, 1966) for strings, as
both methods are based on cost matrices and dynamic programming. Similarly to Bellet
et al. (2011), our theoretical results are derived using uniform stability. However, two
significant differences distinguish the approaches. First, our problem is more complex: we
are considering multiple features, while their case is the equivalent of univariate time series.
Second, concerning the generalization bound, our case is tighter, because our bound does
not depend on the length of time series or of the alignment, while they depend on the
squared length of the alignment.

The rest of this chapter is organized as follows. Section 5.2 contains the main formulation
of SLTS. We start by introducing the similarity function that we propose to learn for time
series, before showing how to learn it while maximizing its (ε, γ, τ)-goodness. Section 5.3
features a theoretical analysis of SLTS based on the framework of uniform stability, which
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leads to the derivation of a generalization bound. In Section 5.4, we present an experimental
study proving the advantages of SLTS, as well as an extended comparison to state of the
art methods. We conclude our contribution in Section 5.5, where we also present future
directions of research.

5.2 Learning (ε, γ, τ)-Good Similarities for Time Series

This section presents a novel method for learning temporal similarity functions based on the
(ε, γ, τ)-good framework. We start by defining the bilinear similarity for multivariate time
series, which takes into account an alignment. Then, we present our convex formulation
for learning it, while improving its goodness for linear classification.

We start by making the notations that will be used throughout this section. Let A ∈ RtA×d

be a multivariate time series of length tA and dimension d. We denote by X the space
of all time series with d features, but of different (finite) lengths. Now consider the
following binary classification problem: we are given labeled multivariate time series (A, y)

drawn from a distribution P over X × {+1,−1}, possibly of different lengths, but of same
dimension d. Without loss of generality, we consider each time series to be normalized as
‖ai‖2 = 1, i ∈ {1 . . . tA}, for all A ∈ X . The results that we develop in the rest of this
chapter hold for bounded multivariate time series in general, up to a normalization factor.

5.2.1 Bilinear Similarity for Time Series

We now introduce the bilinear similarity function that will be used in SLTS. For a pair of
time series A and B both from X , let CM(A,B) ∈ RtA×tB be a pairwise matrix of the
costs of aligning a time moment in A to one in B under the metric parameterized by the
matrix M. As we use a similarity function, CM(A,B) represents the affinity scores that
we want to maximize: the higher the score, the more the two time moments are similar.
We refer to the rows of A as a1, . . . ,atA and those of B as b1, . . . ,btB . We will focus on
a bilinear similarity, where the affinity between time moment i from series A and time
moment j from series B is expressed as:

CM(A,B)i,j = aTi ·M · bj , (5.1)

where M ∈ Rd×d is the matrix parameterizing the metric. For the pair of indices i and j,
the affinity is equivalent to computing the generalized cosine similarity, as ai and bj are
already normalized. The overall affinity matrix can be written as:

CM(A,B) = A ·M ·BT .

CM can be used to compute the optimal alignment between two time series using DTW.
Given this affinity matrix, let πAB be an alignment between A and B of length tAB. Recall
that, following our definition of alignment between time series, πAB contains the pairs of
indices from A and B respectively representing the time moments that are aligned. Now
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let us rewrite the alignment as a binary matrix Y ∈ {0, 1}tA×tB encoding it: Yij
A,B = 1

if the pair of indices (i, j) is part of πAB, and zero otherwise. The matrix YA,B thus
contains tAB non-zero values. Computing the score of aligning A and B from the affinity
matrix and the alignment can be written as the following similarity function:

KM(A,B) = tr(CM(A,B)T ·YAB)/tAB

= tr(B ·MT ·AT ·YAB)/tAB.

The previous equation sums the costs of from CM(A,B), but only for the pairs of points
that are aligned by YAB. When computing the product between the affinity matrix and
the alignment, the scores of the pairs of points that are aligned end up on the main diagonal
of the resulting matrix. Applying the trace operator sums only these diagonal values, while
discarding the others. As the value of the similarity is cumulative, we normalize it w.r.t.
the length of the alignment in order to remove the bias created by very long alignments.

To compute KM, we will not consider the optimal alignment with respect to M, which
would make it sensitive to changes in the similarity parameters. Instead, we will compute
it through DTW using the affinity matrix in Equation (5.1) and replacing M with the
identity matrix. Determining CI(A,B) is thus equivalent to computing the scalar product
between all combinations of time moments between A and B.

Using KM as similarity function to compare multivariate time series allows us to take
advantage of the ideal alignment, while considering an improved weighting of the features
and cross-features for each time moment. Note that a bilinear form has the capacity to
compare time series that have a different number of features, provided that the shape
of the matrix M is adapted. An important property is that the metric matrix M does
not have to be PSD nor symmetric. Moreover, the similarity function KM is linear in M,
meaning that it can be optimized directly. We shall now discuss a method for learning M

from data.

5.2.2 Learning Good Similarities

Our objective is to learn the matrix M that parameterizes the similarity function KM for
usage in classification. To this end, a labeled training set S of m time series {(Ai, yi)}mi=1

drawn accordingly to P is available, together with a set L of n landmarks {(Bj , y
′
j)}nj=1

coming from the same distribution. When optimizing the goodness criterion, we do so with
respect to the set of landmarks L, which we suppose fixed. Two heuristics for choosing
them from data are discussed in the experiments (Section 5.4). As opposed to the previous
chapter, the landmarks are this time labeled, and their class information will be used to
create positive and negative pairs over the whole training set S.

We want to optimize the (ε, γ, τ)-goodness of the proposed similarity function as presented
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in Definition 4.3. Rewriting its first condition for our problem yields:

E(A,y)

[[
1− E(B,y′),R(B)

[
yy′KM(A,B))|R(B)

]
/γ
]
+

]
≤ ε.

Unfortunately, we do not have access to the expected values. We propose to estimate its
empirical value and improve it instead in a regularized risk minimization setting. First,
the empirical loss suffered by one example (A, y) is:

`(M, (A, y),L) =

1− 1

nγ

∑
(B,y′)∈L

yy′KM(A,B)


+

Learning the similarity that satisfies Definition 4.3 is equivalent to learning the entries
of the matrix M that parameterizes it and is done by solving the following optimization
problem over M:

min
M

1

m

∑
(A,y)∈S

1− 1

nγ

∑
(B,y′)∈L

yy′KM(A,B)


+

+ λ ‖M‖2F , (5.2)

where λ is the regularization parameter. Tuning it controls the trade-off between fitting
the data and limiting the complexity of the hypothesis. In order to avoid overfitting, the
objective function is regularized with the squared Frobenius norm of the matrix M. This
norm allows to control the complexity of M in a loose way, without strongly pushing its
entries to zero. Using this regularizer will allow us to provide theoretical guarantees for the
proposed approach through uniform stability. Notice that the similarity function KM is
linear in M, making the whole formulation convex. Problem (5.2) is a quadratic program
(QP) and can easily be solved. We call the proposed method Similarity Learning for Time
Series (SLTS). After solving Problem (5.2), KM is plugged in Equation (4.1) in order to
learn the linear separator α.

SLTS is different from the standard metric learning setting in that it only computes
similarities with respect to chosen landmarks, not the entire training set. Moreover, the
constraints generated this way over pairs of points do not have to be entirely satisfied, but
only on average for each training point. The total number of constraints generated is linear
in the size of the dataset, not quadratic, as it is the case with pairs. Having a formulation
based on landmarks also implies that the optimal alignment based on DTW only needs to
be computed for the data points with respect to the set of landmarks. As computing DTW
is expensive (recall its quadratic complexity in the lengths of the time series), the lower
the number of landmarks, the faster the computation. This is a major advantage of our
approach when compared to classic methods like k-NN and SVM, which have to compute
the entire empirical similarity map for all the pairs of points in the dataset. When fixing
the number of landmarks to a value that is much smaller than the size of the dataset and
independent of it, the complexity of computing all the similarity values for SLTS is linear
in the size of the dataset, while for k-NN and SVM it is quadratic.
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5.3 Theoretical Guarantees

In this section, we present a theoretical analysis of our similarity learning approach based
on the notion of uniform stability (Bousquet & Elisseeff, 2002). First, we prove that SLTS
is stable, property that we then use to derive a consistency bound for the metric. The
main result in this section is presented in Theorem 5.7. We conclude the analysis by a
discussion on the main properties of the bound.

Learning the metric by solving Problem (5.2) places our approach in the framework of
(ε, γ, τ)-good similarity functions, which enforces the theoretical guarantees from The-
orem 4.4, that is a bounded error for the learned linear classifier with respect to the
properties of KM. Additionally, the bound that we derive in this section on the consistency
of M provides a link between the empirical loss we are minimizing under regularization in
Equation (5.2) and the value we want to minimize, the true loss.

We make the following notations. According to Problem (5.2), SLTS minimizes the
empirical risk of the learned matrix M over the whole training set S:

R`S(M) =
1

m

∑
(A,y)∈S

`(M, (A, y),L).

Following Definition 4.3, the error that the algorithm should minimize is the true risk:

R`P (M) = E(A,y)∼P [`(M, (A, y),L)] .

As the set of landmarks is fixed, we will omit it from the notation of the loss function to
simplify the notation. SLTS does not use the classic setting for metric learning, based on
pairs or triplets, but the fixed set of landmarks L. We are thus able to derive our theoretical
results based on the standard setting for uniform stability, without its adaptation to pairs
of points specific to metric learning (Jin et al., 2009). Recall the intuition behind uniform
stability: an algorithm is stable if its outcome is not strongly influenced by small changes
in the input. In this framework, the notion of marginal variation is conveyed by the
replacement of one example by a new one from the same distribution P . We will denote
by Si the training set obtained from S by changing the ith example. Similarly, let Mi be
the solution to SLTS when solved for training set Si. To prove the stability of SLTS, we
first need to show that the considered loss function is bounded and l-lipschitz: the smaller
l, the more stable the algorithm. We do so in Lemmas 5.1 and 5.2. All the proofs of the
Lemmas in this section are presented in Appendix B.2.

Lemma 5.1 (Bound on the loss function). Let (A, y) be an example and MS the solution
to Problem (5.2). Then

`(MS , (A, y)) ≤
√

2d

γ
√
λ
.

In Chapter 4, we have used l-lipschitzness to bound the value of a similarity function w.r.t.
the difference between two examples, in order to prove algorithmic robustness. For uniform
stability, we prove the l-lispchitzness of the loss function w.r.t. the variation in M in the
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next lemma.

Lemma 5.2 (l-lipschitz continuity). Let M and M′ be two matrices and (A, y) an example.
The loss function ` is l-lipschitz w.r.t. M with l =

√
2d
γ , that is:

|`(M, (A, y))− `(M′, (A, y))| ≤ l
∥∥M−M′

∥∥
F .

The property of l-lipschitzness implies that the loss variation is proportional to the difference
between M and M′. The lemma we present next is used for the proof of the uniform
stability of an algorithm. Consider the following notation for the objective function of
SLTS (Equation (4.3)):

FS(M) := RS(M) + λ ‖M‖2F .

Lemma 5.3. Let FS(·) and FSi(·) be the functions to optimize, M and Mi their corre-
sponding minimizers, and λ the regularization parameter used. Let ∆M = M−Mi. Then
we have, for t ∈ [0, 1]:

‖M‖2F − ‖M− t∆M‖2F +
∥∥Mi

∥∥2

F −
∥∥Mi + t∆M

∥∥2

F ≤
2lt

λm
‖∆M‖F .

We can now prove that our approach has uniform stability.

Theorem 5.4 (Stability of SLTS). Given a training sample S of m examples drawn i.i.d.
from P , our algorithm SLTS has uniform stability in κ/m with κ = 4d

γ2λ
.

Proof. By setting t = 1
2 in Lemma 5.3, we obtain after some computations:

1

2
‖∆M‖2F ≤

k

λm
‖∆M‖F ,

which implies:

‖∆M‖F ≤
2k

λm
.

Since our loss is l-lipschitz, we have:

|`(M, (A, y))− `(Mi, (A, y))| ≤ l ‖∆M‖F =
2l2

λm

For this loss function, l =
√

2d
γ , and setting κ = 4d

γ2λ
proves the lemma.

Having now shown the uniform stability of SLTS, we are ready to derive the generalization
bound. For this, Lemmas 5.5 and 5.6 are necessary, providing bounds on quantities that
intervene in the proof of the bound. Let ES = R`P (M)−R`S(M). We need to bound the
quantities ES [ES ] and |ES − ESi |.

Lemma 5.5. For a learning method of estimation error ES and satisfying a uniform
stability of κ/m, we have:

ES [ES ] ≤ κ

m
.
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Lemma 5.6. For any metric M learned by solving Problem (5.2) on a training set S of
m samples, and a loss function ` bounded according to Lemma 5.1, we have:

|ES − ESi | ≤
2κ

m
+

√
2d

mγ
√
λ
.

We can now present our main theoretical result, the consistency bound for the metric
learned by SLTS:

Theorem 5.7 (Generalization bound using uniform stability). With probability 1− δ, for
any matrix MS learned by solving SLTS, we have:

R`P (MS)−R`S(MS) ≤ 4d

γ2λm
+

(
4d

γ2λ
+

1

γ

√
2d

λ

)√
2 log 2

δ

m
.

Proof. Using McDiarmid’s inequality and Lemma 5.6, we can write:

Pr[ES − E[ES ] ≥ ε] ≤ 2 exp

− 2ε2

m
(

2κ+p
m

)2

 . (5.3)

By setting δ = 2 exp

(
− 2ε2

m( 2κ+p
m )

2

)
in Inequality (5.3), we obtain:

ε =

√√√√ 2

m

(
4d

γ2λ
+

1

γ

√
2d

λ

)2

log
2

δ
.

Then, with probability 1− δ

ES = R`P (MS)−R`S(MS) < E[ES ] + ε

R`P (MS) < R`S(MS) +
κ

m
+ ε.

Replacing the values of κ and ε in the previous inequality yields the bound.

The result from Theorem 5.7 shows the consistency of the proposed similarity learning
approach. The bound converges with a standard rate of O(1/

√
m) in the number of

samples. The tightness of the bound is inversely proportional to the size of the margin γ,
supported also by the intuition that a better separation of the classes is more robust to
new examples arriving, keeping the empirical error closer to the true error. An important
feature of this bound is its independence from the lengths of the time series and of the
alignments considered. As in practice these values can be elevated, introducing even a
linear dependence on them would deteriorate the quality of the bound, making it loose
and uninformative. Overall, the bound strongly resembles PAC bounds derived using the
uniform stability for methods dealing with feature vectors, even though multivariate time
series have an additional dimension. This means that SLTS does not suffer any penalty in
its generalization capacity from working with multivariate time series instead of feature
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Table 5.1: Properties of the datasets used in the experimental study.

Dataset #Instances Length #Features #Classes

Japanese vowels 640 7-29 12 9
Auslan 675 47-95 22 25
Arabic digits 8800 4-93 13 10
Robot exec. failure

LP1 88 15 6 4
LP2 47 15 6 5
LP3 47 15 6 4
LP4 117 15 6 3
LP5 164 15 6 5

vectors. According to (Verma & Branson, 2015), the presence of the number of features d
in the numerator of the bound is to be expected and shows that the approach may suffer
from the curse of dimensionality. High values of d can be compensated by increasing either
the size of S, or the value of the regularization parameter λ, present in the denominator.
SLTS minimizes the empirical error of the (ε, γ, τ)-good framework, thus reducing the error
rate ε. By plugging the metric learned by SLTS into the framework, we obtain a guarantee
on the performance of the associated linear classifier.

5.4 Experimental Validation

In this section, we present the results of the experiments conducted to evaluate the
performance of the proposed method. In the first experiment, we show that learning the
matrix M brings additional information w.r.t. a standard metric for linear classification.
We also analyze the influence of the number of landmarks on SLTS. The second study
provides a comparison of SLTS to the state of the art algorithms while the third part
illustrates the capacity of SLTS to learn a discriminant metric in the feature space created
by the landmarks. The last experiment analyzes different heuristics for selecting landmarks
and their impact on performance. We conduct the experimental study on multivariate time
series datasets coming from UCI Machine Learning Repository (Lichman, 2013), containing
between 47-8800 instances. The characteristics of the datasets are presented in Table 5.1.

5.4.1 Experimental Setting

Compared methods We evaluate the following classic algorithms:

• Standard nearest neighbor classifier (1NN);

• Linear SVM under L2 regularization;

• Linear classifier from Balcan et al. (2008b), presented in Equation (4.2) (called BBS
from now on);

• LDMLT (Mei et al., 2015) with a nearest neighbor classifier;
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Table 5.2: Classification accuracy (%) with confidence interval at 95%.

Method Japanese vowels Auslan Arabic digits Robot exec. failure Avg.

1NN 93.8 77.8±2.1 94.7 68.8±7.5 92.1
LDMLT 97.3 95.0±1.3 96.9 71.9±7.0 95.6
SVM 97.8±0.1 92.6±0.1 93.3±0.0 60.6±6.5 92.2
BBS 97.1±0.5 91.1±1.6 96.4±0.3 66.9±10.6 94.7
SLTS 97.1±0.4 91.1±2.7 97.9±0.4 67.0±7.8 95.8

• SLTS, the similarity learning method proposed in this chapter, which is then used to
learn a global linear classifier using the formulation in Balcan et al. (2008b).

Data processing and parameter settings To propose a fair comparative study, all
the methods that do not learn a metric use the proposed bilinear form as similarity
function (with M set to the identity matrix) computed with the DTW alignment on
the scalar product, that is KI based on CI. As confirmed in the following experiments,
landmarks are randomly chosen for BBS and SLTS. We use all the classifiers in their binary
version, in a one-vs-all setting. We recall here that each time moment is normalized to
ensure the L2 norm equals 1. For this experimental study, we have access to a standard
training/test partitioning for Japanese vowels and Arabic digits datasets, while Robot
execution failure (LP1-5) and Auslan are randomly split to 70% training/30% test data.
For all datasets, we retain 30% of the training set for hyperparameter tuning. We perform
experiments on 10 different splits and present the average result with a 95% confidence
interval. Cross-validation is performed to tune the following parameters: C ∈ {2−6, . . . , 29}
for SVM, γ ∈ {10−4, . . . , 101} for BBS, both when used separately or joint to SLTS, and
λ ∈ {0.1, 1, 10} for SLTS.

5.4.2 Experimental Results

Behavior of SLTS and impact of the number of landmarks As stated before, BBS
and SLTS use the same formulation to learn the linear classifier. In this first experiment, we
(i) show that SLTS improves classification performance compared to BBS and (ii) analyze
the influence of the quantity of landmarks on the accuracy obtained for BBS and SLTS.
We consider the range of up to 50% of the size of the training set as landmarks for small
datasets, or up to 100 landmarks for the others. The results of this study are presented in
Figure 5.1. The accuracy of SLTS is almost always higher than that of BBS independently
of the number of landmarks, showing the improvement that can be obtained through
similarity learning. When a reasonable quantity of data is available (Figures 5.1(a)-5.1(c)),
SLTS achieves a performance close to its best value even with a few landmarks. Our
method thus performs well even with a low quantity of data, considerably reducing the
computation time for learning the similarity. Overall, BBS has difficulties providing a good
classifier based on a small number of landmarks, but the results of the method significantly
improve with more landmarks. We explain the high variability of the results of BBS and
SLTS on LP1-LP5 by the small sizes of the tasks.
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(a) Auslan (b) Arabic digits

(c) Japanese vowels (d) LP1

(e) LP2 (f) LP3

(g) LP4 (h) LP5

Figure 5.1: Classification accuracy of BBS and SLTS w.r.t. the number of landmarks.
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Classification performance comparison The results of the comparison of SLTS and
BBS with other methods are displayed in Table 5.2. For this second experiment, both SLTS
and BBS are based on the maximum number of landmarks from the previous experiment.
Note that confidence interval in the table values means that the train/test split of the
data is already provided, and the output of the method is deterministic. As one can
observe, among global methods relying on a linear classification (i.e., SLTS, BBS, and
SVM), both SLTS and BBS perform better than SVM (they are on a par on Japanese
vowels, slightly below on Auslan, and above on Arabic digits and Robot execution failure).
Using a Student t-test for paired samples on the average reveals that SLTS is significantly
better than BBS and SVM. This shows the usefulness of the (ε, γ, τ)-good framework as
well as the importance of metric learning in this framework. The comparison of SLTS
with local methods (as 1NN and LDMLT) yields more contrasted results. On all datasets
except Robot exec. failure, 1NN is significantly below SLTS according to a Student t-test.
However, compared to LDMLT, SLTS is on a par on Japanese vowels, below on Auslan
and Robot execution failure, and above on Arabic digits (a Student t-test on the average
does not reveal any significant difference between the two methods). LDMLT relies on
both a local method and a metric learned, which suggests again that learning a metric is
beneficial on these datasets. This said, LDMLT learns a distance, whereas all the other
methods rely on a similarity. The comparison between the two should thus be taken with
caution as distances and similarities can yield very different results (Qamar & Gaussier,
2009a).

Visualization of the similarity space To illustrate the transformation induced in
the feature space by learning the metric, we propose a visualization experiment on the
Japanese vowels dataset using 10 landmarks chosen randomly. We compute the value
of the similarity function KM for all the data w.r.t. the landmarks, first without metric
learning (M = I), then with the metric learned for each of the 9 classes. In all the cases,
we apply PCA (Jolliffe, 1986) to the values of the similarity function and plot the first
two components. We thus obtain a 2D representation of the feature space, of which we
present in Figure 5.2 the case of the initial feature space and that of the metric learned
for the first three classes. In similarity space with no metric learning (Figure 5.2(a)), all
the data points are mixed, independently of their label. In Figures 5.2(b)-5.2(d), each
metric linearly separates the class it has learned to discriminate from the others. For the
learned similarities, the first two components of PCA explain around 98% of the variance,
while with no similarity learning this value is around 86%. This study proves that learning
an (ε, γ, τ)-good similarity function changes the representation space towards better class
discrimination, making it suitable for learning a large margin linear separator.

Heuristics for choosing the landmarks We have previously assumed we have access
to a set of landmarks for the construction of the feature space. We will now discuss two
heuristics for choosing the most representative points in the training set as landmarks,
before presenting experimental results concerning the performance of each of these methods.
K-Medoids (Kaufman & Rousseeuw, 1987) is a classical clustering technique. The
resulting medoids representing the clusters are points of the initial dataset, that will be
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(a) No metric learning (b) Metric for class 1

(c) Metric for class 2 (d) Metric for class 3

Figure 5.2: PCA (first two components) in the similarity space for Japanese vowels. Each
class becomes linearly separable from the others when using its corresponding metric.

subsequently used as landmarks. Dselect (Kar & Jain, 2011) was proposed as a landmarks
selection algorithm which optimizes a criterion of diversity. Starting with a randomly
chosen landmark, at each iteration the algorithm greedily adds to the set of landmarks
the training point that is least similar to the ones already selected (see Algorithm 5.1).
Note that for both selection heuristics the number of landmarks needs to be set in advance.
Also, none of these methods exploits the information from the labels of the time series.
In the case where no prior information is available for the classification task, the set of
landmarks can also be selected randomly from the training set, with the risk of relying
upon non informative landmarks.

We now present in Tables 5.3 and 5.4 the classification results after learning the similarity
with SLTS on landmarks selected using the presented heuristics. DSelect and KMedoids are
compared against landmarks selected randomly as baseline, in order to determine if they
are indeed informative. We perform these experiments on two small datasets, Japanese
vowels and LP1. The mass of chosen landmarks is selected as a percentage of the total
size of the training set and goes up to 50%. For Japanese vowels (Table 5.3), all three
methods perform almost the same for all amounts of landmarks. DSelect reaches its best
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Algorithm 5.1 Dselect heuristic
Input A training set S, number of landmarks n
Output A set L of n landmarks
L ← random element of S
for i = 2 to n do

z ← arg minz=(x,y)∈S
∑

z′=(x′,y′)∈LK(x,x′)
L ← L ∪ {z}
S ← S \ {z}

end for
return L

Table 5.3: Classification accuracy for landmarks selection methods on Japanese vowels.

Lmks DSelect KMedoids Random

3% 96.8±0.6 96.3±0.6 96.4±0.7
5% 96.5±0.6 95.9±0.7 96.4±0.6
7% 97.0±0.2 96.3±0.4 96.2±0.5
10% 97.3±0.3 96.2±0.5 96.5±0.6
15% 97.1±0.2 96.4±0.4 97.0±0.4
20% 97.1±0.3 96.8±0.4 97.1±0.4
30% 96.7±0.4 97.0±0.3 97.1±0.4
40% 97.0±0.4 96.9±0.3 97.1±0.4
50% 96.8±0.3 96.9±0.3 96.9±0.4

performance when the selected points represent 10-20% of the training set, while KMedoids
works best around 30% mass of landmarks. Overall, DSelect and Random heuristics yield
better performance than KMedoids. The results using Random show that SLTS can learn
well ever when no computational effort is put into choosing the landmarks. In the case
of LP1 (Table 5.4), and in contrast to the Japanese vowels dataset, the performance of
all the heuristics improves when increasing the number of landmarks. The best results
are obtained for 40% mass of landmarks in the case of DSelect and Random, and 50% for
KMedoids. For this dataset, the results are less stable, inducing larger confidence intervals.
For this reason, even though the best accuracy is attained by DSelect, its improvement
over Random is not necessarily significant. KMedoids is this time also the least performant

Table 5.4: Classification accuracy for landmarks selection methods on LP1.

Lmks DSelect KMedoids Random

3% 48.5±6.2 50.7±9.4 56.3±12.2
5% 67.8±9.7 63.3±10.1 62.6±5.9
7% 67.8±9.7 63.3±10.1 62.6±5.9
10% 68.5±9.6 65.2±5.5 65.6±9.4
15% 67.0±6.4 69.3±6.8 68.5±10.0
20% 71.1±5.6 68.9±5.8 64.4±8.1
30% 70.4±7.2 66.7±6.8 70.4±5.7
40% 74.4±7.9 70.4±6.5 72.2±5.3
50% 73.0±7.0 71.5±8.5 70.7±7.0
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heuristic.

KMedoids and DSelect have by themselves a computational complexity that is not to
be ignored when working on large datasets. Even so, their main disadvantage for time
series is not the algorithmic complexity in itself, but the necessary precomputations. One
needs to compute the value of the similarity function for all pairs of time series, including
the alignment, in order to be able to apply these heuristics. This limitation goes directly
against the main advantage of working with methods based on landmarks, like SLTS. In
view of this aspect and the previous experimental results, we have only considered the
Random heuristic when comparing SLTS against state of the art algorithms on bigger
datasets.

5.5 Conclusion

The last contribution of this thesis addresses the problem of improving the performance
when learning a global linear classifier for multivariate time series. In the present chapter,
this problem was tackled by learning a bilinear similarity under the optimal alignment
provided by DTW. SLTS is an efficient convex formulation which improves the (ε, γ, τ)-
goodness of the similarity with respect to a set of landmarks. We thus obtain a global
metric which integrates constraints from positive and negative pairs. We prove the uniform
stability of our method, which allows us to derive a generalization bound for the similarity.
This bound has a standard convergence rate when the size of the sample increases and
the additional important advantage of being independent from the length of the time
series, as well as the length of the alignment. SLTS is, to the best of our knowledge, the
first approach to provide a consistency bound for the learned metric in the case of time
series. The experimental study proves the usefulness of the (ε, γ, τ)-good framework, as
well as the importance of metric learning in this setting. We also presented experiments
covering different heuristics for landmarks selection, proving that random selection provides
a computationally cheap alternative without strongly degrading performance.

In SLTS, the parameters of the bilinear similarity are learned under the alignment computed
by DTW using a standard similarity, with no parameters. An intuitive idea is to reconsider
the optimal alignment and recompute it under the new metric. We have performed
this step in hope of obtaining a new, better alignment that would improve classification
performance. However, in practice, recomputing the alignment using the learned metric
does not necessarily improve the results, even when multiple iterations of the two steps
are performed (applying DTW and learning M). The intuition behind this behavior is
that the learned matrix M is the solution to a convex problem which is parameterized by
the initial optimal alignment. By changing the alignment, (i) M is no longer the solution
to the problem and (ii) the new alignment is computed through a dynamic programming
technique, not optimization, thus with no guarantees of minimizing the loss. A similar
phenomenon was also reported in the recent work from Zhao et al. (2016).

Future work could cover an extension to other similarity functions, including some based
on the Mahalanobis distance, but without enforcing the PSD constraint. Provided the
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similarity function respects the necessary constraints, i.e. being bounded and l-lipschitz,
the consistency bound of SLTS would be able to incorporate their properties directly.
Similarly, an interesting perspective would be to study the impact regularizers with
different properties on the matrix M. For example, a sparsity-inducing norm would allow
to automatically detect features that are not relevant, providing valuable information about
the task at hand. This would impact SLTS with respect to the consistency bound for the
metric. As mentioned previously, the framework of uniform stability can only be used with
strongly convex regularizers. An equivalent PAC bound would have to be derived using an
alternative framework, e.g. the Rademacher complexity.

We believe that a straightforward, but useful extension of SLTS should address learning
multiple metrics. This idea is justified by the intuition that the metrics should be able to
capture local temporal information: depending on the time moment, a different metric
could be more appropriate. The current version of SLTS is unable to do so, as the same
metric matrix is used for all time moments. Our theoretical results could be adapted to
cover such a setting.
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Conclusion and Perspectives

In this thesis, we have given an overview of the state of development in metric learning for
certain types of problems, while presenting their main limitations. We addressed a number
of these limitations in our contributions, in a more general setting for feature vectors, as
well as for structured data with a temporal dimension. An important focus was placed on
the theoretical foundations guiding the proposals, as we believe guarantees of performance
to be essential. When developing our methods, we have also tried to keep in mind the
practical aspects that would make them usable.

Overall, we addressed the following limitations:

• The deficiency in theoretical results for metric learning: even though in recent years
more studies have been concerned with developing theoretical analyses, two tendencies
can be noticed: (i) some of these studies are only theoretical and (ii) overall, only
a small number of the practical approaches in metric learning have addressed this
question.

• The artificial constraints imposed on the learned metric: most methods enforce the
PSD and symmetry properties, for feature vectors and time series alike, often because
they learn a Mahalanobis distance. Instead, we have chosen to work with similarity
functions that do not need these properties.

• The lack of results and methods in learning custom metrics for temporal data,
especially for the most common type in real-world applications that is multivariate
time series.

The first contribution was to propose JSL, a framework which allows to learn a similarity
function at the same time as a global linear classifier. The method directly optimizes the
(ε, γ, τ)-goodness (Balcan et al., 2008b) of the similarity function, which is directly related
to its performance in classification. An important characteristic of JSL deriving from this
is its semi-supervised setting. It allows the method to take advantage of unlabeled data in
a different way from most semi-supervised methods, that is by using it to construct the
feature space where the data will be projected. The capacity to leverage unlabeled examples
makes the proposed framework particularly adapted to the real-world setting where data
annotation is expensive, and only a small number of labeled instances is available. To the
best of our knowledge, our method is the first one to learn the metric and the classifier at
the same time partly from unlabeled data. The generality of JSL lies in the fact that it can
be instantiated with a broad range of similarity functions and regularizers, thus providing
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a way to solve problems with different properties. The general regularizer has the capacity
to incorporate prior knowledge about the given task. We also propose an efficient method
for solving the problem, which is convex under mild constraints for the similarity function.
From a theoretical standpoint, we analyze JSL through the perspective of two frameworks:
the algorithmic robustness and the uniform convergence with Rademacher complexity.
Both analyses yield generalization bounds for the learned similarity and classifier which
hold for different similarity functions and provide information about them. The extensive
experimental study shows that JSL achieves better performance than a large number of
other methods. The source code for JSL is publicly available under GNU/GPL 2+ license1.

Our second contribution focuses on a particular type of data, which are multivariate time
series. We proposed to learn a bilinear similarity function for a classification task. Once
again, we aimed at generalizing over kernel functions by relaxing the PSD constraint,
while linking the properties of the similarity to its performance in classification. This was
done by learning an (ε, γ, τ)-good similarity based on the optimal alignment between time
series computed through DTW. The problem, called SLTS, is formulated as a quadratic
program, which can be solved efficiently. Working with time series is often computationally
expensive, mostly because of the complexity of the data and DTW when computing the best
alignment between pairs of points. We were able to reduce the number of similarity values
and alignments to compute by basing the approach on landmarks (in the same sense as the
(ε, γ, τ)-good framework) and limiting their number, while also keeping alignments fixed.
We established generalization guarantees for SLTS based on uniform stability, ensuring
the consistency of the metric. The obtained bound is rather tight and independent from
the lengths of the time series and the alignments, resembling similar bounds for feature
vectors. The experimental study shows the good properties of the metric, as well as its
performance when compared to standard methods. To the best of our knowledge, SLTS is
the first method performing metric learning for multivariate time series which comes with
such a theoretical analysis. The source code for solving SLTS is also publicly available
under GNU/GPL 2+ license2.

There are multiple interesting perspectives for extending the methods that we have proposed.
One of them is to adapt them to learning multiple metrics, each one corresponding to
a different region of the space. We believe that this direction can capture additional
information in the data, as well as provide an implicit way of introducing nonlinearity.
Note that the (ε, γ, τ)-good framework includes a setting where multiple functions can be
combined to obtain an overall metric that is also guaranteed to be good. Another possible
extension is to adapt the proposed approaches to an online setting, where examples arrive
one at a time. This would allow the methods to scale better. In practice, the first points
received would be considered as landmarks for the learning process. For this setting, one
could derive regret bounds with respect to the batch version.

From a theoretical standpoint, this thesis has analyzed the guarantees that can be obtained
by a learned similarity function in linear classification. These results were derived based
on the (ε, γ, τ)-good theory. Unfortunately, this framework links similarity functions to

1Download at http://inicolae.com/resources/jsl.zip.
2Download at http://inicolae.com/resources/slts.zip.
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the particular case of global linear classifiers. Considering that state of the art in metric
learning, be it for feature vectors or time series, is oriented towards the k-NN classifier, it
would be a major result to develop theoretical analysis frameworks or particular results for
certain methods concerning this local classification rule. Some results have already been
established for the online and batch settings by Qamar et al. (2008) based on the voted
perceptron theory of Freund & Schapire (1998).

Another promising avenue for research would be to explore settings that have not received
much attention in metric learning, like unsupervised learning. This is a difficult problem,
because the criterion the metric should optimize is not always evident, as is the case
for performance measures as well. A first result using the uniform stability to derive
theoretical guarantees for the general case of unsupervised learning algorithms was recently
derived in Abou-Moustafa & Schuurmans (2015), paving the way for further research.
More precisely, they focus on applications for clustering and dimensionality reduction.
Unfortunately, their results depend on manually defining a criterion of evaluation for each
application.
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Appendix A

Concentration Inequalities

Concentration inequalities provide bounds on how a random variable deviates from a value,
usually its expected value. The law of large numbers states that sums of independent
random variables are, under very mild conditions, close to their expectation with a large
probability.

McDiarmid’s inequality bounds the expected value for sufficiently regular function of the
variables.

Theorem A.1 (McDiarmid’s inequality (McDiarmid, 1989)). Let X1, . . . , Xn be indepen-
dent random variables taking values in the set X . Further, let f : X n → R be a function of
X1, . . . , Xn that satisfies ∀i,∀x1, . . . , xn, x

′
i ∈ X ,

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i . . . , xn)| ≤ ci.

Then, for all ε > 0,

Pr[f − E[f ] ≥ ε] ≤ exp

( −2ε2∑n
i=1 c

2
i

)
.

When the random variables Xi are bounded and f is the mean value, we obtain Hoeffding’s
inequality, which provides an upper bound on the probability that the sum of random
variables deviates from its expected value.

Theorem A.2 (Hoeffding’s inequality (Hoeffding, 1963)). Let X1, . . . , Xn be independent
random variables respectively taking values in the intervals [ai, bi]. Further, let X̄ =
1
n

∑n
i=1Xi Then, for all ε > 0,

Pr[X̄ − E[X̄] ≥ ε] ≤ exp

( −2ε2n2∑n
i=1(bi − ai)2

)
.
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Appendix B

Proofs

B.1 Proofs of Chapter 4

This appendix details proofs of Theorem 4.9, and the l-lipschitzness of the similarity
functions K1

M, K2
M, and K3

M.

Proof of Theorem 4.9 (Xu & Mannor, 2010). We bound the difference between the true
risk and the empirical risk in the following way:

∣∣∣R`P (M,α)−R`S(M,α)
∣∣∣ =

∣∣∣∣∣Ez∼P `(M,α, z)− 1

dl

dl∑
i=1

`(M,α, zi)

∣∣∣∣∣
=

∣∣∣∣∣
M∑
i=1

Ez∼P (`(M,α, z)|z ∈ Ci) p(Ci)−
1

dl

dl∑
i=1

`(M,α, zi)

∣∣∣∣∣
≤

∣∣∣∣∣∣
M∑
i=1

Ez∼P (`(M,α, z)|z ∈ Ci) p(Ci)−
M∑
j=1

Ez∼P (`(M,α, z)|z ∈ Ci)
|Ni|
dl

∣∣∣∣∣∣
+

∣∣∣∣∣
M∑
i=1

Ez∼P (`(M,α, z)|z ∈ Ci)
|Ni|
dl
− 1

dl

dl∑
i=1

`(M,α, zi)

∣∣∣∣∣ (B.1)

=

∣∣∣∣∣
M∑
i=1

Ez∼P (`(M,α, z)|z ∈ Ci)
∣∣∣∣p(Ci)− |Ni|

dl

∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣∣ 1

dl

M∑
i=1

∑
zj∈Ci

Ez∼P (`(M,α, z)|z ∈ Ci)−
1

dl

M∑
i=1

∑
zj∈Ci

`(M,α, zj)

∣∣∣∣∣∣
≤
∣∣∣∣∣max
z∼P

`(M,α, z)

M∑
i=1

∣∣∣∣ |Ni|
dl
− p(Ci)

∣∣∣∣
∣∣∣∣∣+

∣∣∣∣∣∣ 1

dl

M∑
i=1

∑
j∈Ni

max
z∈Ci
|`(M,α, zj)− `(M,α, z)|

∣∣∣∣∣∣
≤1

γ
lρ+B

√
2M ln 2 + 2 ln(1/δ)

dl
. (B.2)

Inequality (B.1) is due to the triangle inequality. Inequality (B.2) comes from the applica-
tion of Proposition 4.8 and Theorem 4.7.

Properties of the similarity function K1
M. Recall that K1

M(x,x′) = xTMx′. In order to
prove that K1

M is 1-lipschitz, we need to bound the following difference.
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|K1
M(x,x′′)−K1

M(x′,x′′)| =
∣∣(xTMx′′)− (x′TMx′′)

∣∣
=
∣∣(x− x′)TMx′′

∣∣
≤ ||x− x′||2 · ||Mx′′||2 (B.3)

≤ ||x− x′||. (B.4)

Inequality (B.3) comes from the Cauchy-Schwarz inequality and some classical norm prop-
erties. Finally, Inequality (B.4) comes from Constraint (4.5) in JSL and the normalization
of the data resulting in ||x||2 ≤ 1.

We now prove that K1
M is (0,1)-admissible. It is straightforward to bound its absolute

value:

|K1
M(x,x′)| = |xTMx′|

≤
∥∥x′xT∥∥

2
‖M‖F (B.5)

We get Inequality (B.5) by applying the Cauchy-Schwarz inequality.

Properties of the similarity function K2
M. Recall that K2

M(x,x′) = 1−(x−x′)TM(x−x′).
As in the case of similarity K1

M, we bound the following difference:

∣∣K2
M(x,x′′)−K2

M(x′,x′′)
∣∣ =
∣∣1− (x− x′′)TM(x− x′′)− 1 + (x′ − x′′)TM(x′ − x′′)

∣∣
=
∣∣(x′ − x′′)TM(x′ − x′′)− (x′ − x′′)TM(x− x′′)

+ (x′ − x′′)TM(x− x′′)− (x− x′′)TM(x− x′′)
∣∣

=
∣∣(x′ − x′′)TM(x′ − x) + (x′ − x)TM(x− x′′)

∣∣
≤
∣∣(x′ − x′′)TM(x′ − x)

∣∣+
∣∣(x′ − x)TM(x− x′′)

∣∣
≤||x′ − x′′||2 · ||Mx′ −Mx||2 + ||x′ − x||2 · ||Mx−Mx′′||2

(B.6)

≤||x′ − x′′||2 · (||x′||2 + ||x||2) + ||x′ − x||2 · (||x||2 + ||x′′||2)

(B.7)

≤4||x− x′||. (B.8)

Inequalities (B.6) comes from the Cauchy-Schwarz inequality and some classical norm
properties; Inequality (B.7) is due to Constraint (4.5) in JSL, and Inequality (B.8) is due
to the normalization of the data ||x||2 ≤ 1.

We now prove that K2
M is (1,4)-admissible.

|K2
M(x,x′)| = |1− (x− x′)TM(x− x′)|

≤ 1 +
∥∥(x− x′)TM(x− x′)

∥∥
≤ 1 +

∥∥x− x′
∥∥2

2
‖M‖F (B.9)
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≤ 1 + 4
∥∥x′xT∥∥

2
‖M‖F (B.10)

We get Inequality (B.9) by applying the Cauchy-Schwarz inequality. As the examples are
normalized ‖x‖2 ≤ 1, we obtain Inequality (B.10).

Properties of the similarity function K3
M. Recall thatK3

M(x,x′) = exp
(
− (x−x′)TM(x−x′)

2σ2

)
.

This proof is similar to the one for the previous similarities. We bound the following
difference:

∣∣K3
M(x,x′′)−K3

M(x′,x′′)
∣∣ =

∣∣∣∣exp

(
− (x− x′′)TM(x− x′′)

2σ2

)
− exp

(
− (x′ − x′′)TM(x′ − x′′)

2σ2

)∣∣∣∣
≤
(

exp

(
1

2σ2

)
− exp

( −1

2σ2

))
·
∣∣∣∣ (x′ − x′′)TM(x′ − x′′)

2σ2
− (x− x′′)TM(x− x′′)

2σ2

∣∣∣∣ (B.11)

=
1

2σ2

(
exp

(
1

2σ2

)
− exp

( −1

2σ2

))
·
∣∣(x′ − x′′)TM(x′ − x′′)− (x′ − x′′)TM(x− x′′) + (x′ − x′′)TM(x− x′′)− (x− x′′)TM(x− x′′)

∣∣
=

1

2σ2

(
exp

(
1

2σ2

)
− exp

( −1

2σ2

))
·
∣∣(x′ − x′′)TM(x′ − x) + (x′ − x)TM(x− x′′)

∣∣
≤ 1

2σ2

(
exp

(
1

2σ2

)
− exp

( −1

2σ2

))
·
(∣∣(x′ − x′′)TM(x′ − x)

∣∣+
∣∣(x′ − x)TM(x− x′′)

∣∣)
≤ 1

2σ2

(
exp

(
1

2σ2

)
− exp

( −1

2σ2

))
· (‖x′ − x′′‖2 · ||Mx′ −Mx||2 + ‖x′ − x‖2 · ‖Mx−Mx′′‖2)

(B.12)

≤ 1

2σ2

(
exp

(
1

2σ2

)
− exp

( −1

2σ2

))
· (‖x′ − x′′‖2 · (‖Mx′‖2 + ‖Mx‖2) + ‖x′ − x‖2 · (‖Mx‖2 + ‖Mx′′‖2)) (B.13)

≤ 1

2σ2

(
exp

(
1

2σ2

)
− exp

( −1

2σ2

))
· (‖x′ − x′′‖2 · (‖x′‖2 + ‖x‖2) + ‖x′ − x‖2 · (‖x‖2 + ‖x′′‖2))

(B.14)

≤ 1

2σ2

(
exp

(
1

2σ2

)
− exp

( −1

2σ2

))
4 ‖x′ − x‖ (B.15)

=
2

σ2

(
exp

(
1

2σ2

)
− exp

( −1

2σ2

))
‖x− x′‖ .

Inequality (B.11) is due to the l-lipschitzness of the exponential function on the range
[ −1
2σ2 ,

1
2σ2 ]. Inequalities (B.12) and (B.13) come from the Cauchy-Schwarz inequality and

some classical norm properties. Inequality (B.14) is due to Constraint (4.5) in JSL and
Inequality (B.15) is due to ||x||2 ≤ 1.

We now prove that K3
M is

(
exp(−2/σ2), 0

)
-admissible:

|K3
M(x,x′)| =

∣∣∣∣exp

(
−(x− x′)TM(x− x′)

2σ2

)∣∣∣∣
≤ exp

(
−4
∥∥xTx′∥∥

2
‖M‖F

2σ2

)
(B.16)
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≤ exp

(
− 2

σ2

)
(B.17)

We use the (1, 4)-admissibility of K2
M to obtain Inequality (B.16), while Inequality (B.17)

comes from the data normalization and the fact that ‖M‖F ≤ 1. Here, we are only able to
bound K3

M by a constant.

B.2 Proofs of Chapter 5

This section contains the proofs of Lemmas 5.1 to 5.6 from Chapter 5, as well as defining
some additional lemmas necessary for these proofs.

To prove Lemma 5.1, we need two additional lemmas. Lemma B.1 bounds the Frobenius
norm of the learned matrix M, while Lemma B.2 puts a bound on the Frobenius norm of
a subpart of the similarity function.

Lemma B.1. If M is the optimal solution of Problem (4.3), we have:

||M||F ≤
1√
λ
.

Proof. Since M is the optimal solution of Problem (4.3), we have:

RS(M) ≤ RS(0)

1

m

∑
(A,y)∈S

`(M, (A, y)) + λ||M||2F ≤
1

m

∑
(A,y)∈S

`(0, (A, y)) + λ||0||2F

λ ‖M‖2F ≤
1

m

∑
(A,y)∈S

`(0, (A, y)) (B.18)

λ ‖M‖2F ≤ 1 (B.19)

‖M‖F ≤
1√
λ

Inequality (B.18) is a result of the fact that the hinge loss is always positive, while
Inequality (B.19) comes from noting that the loss is bounded by 1/m when the metric is
set to zero.

Lemma B.2 (Technical lemma). Let A ∈ RtA×d and B ∈ RtB×d be two examples, and
YAB ∈ {0, 1}tA×tB of length tAB. Then∥∥AT ·YAB ·B

∥∥
F ≤ tAB

√
2d.

Proof. ∥∥AT ·YAB ·B
∥∥
F
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=

√√√√√ d∑
i=1

d∑
t=1

 tA∑
j=1

tB∑
k=1

aijyjkbkt

2

=

√√√√√ d∑
i=1

d∑
t=1

2

tA∑
j=1

tB∑
k=1

tA∑
j′=1

tB∑
k′=1

(aijyjkbkt)(aij′yj′k′bk′t)−
∑
jk

(aijyjkbkt)2


≤
√∑

i,t

2
∑
j,k

∑
j′,k′

|(aijyjkbkt)(aij′yj′k′bk′t)|

=

√
2
∑
j,k

yjk
∑
j′,k′

yj′k′ +
∑
i,t

aijaij′bktbk′t

≤
√

2t2AB|
∑
i

aijaij′
∑
t

bktbk′t|

=

√
2t2AB max

i
aij
∑
i

|aij |max
t
bkt
∑
t

|bkt|

=
√

2t2AB max
i
aij ‖ai‖1 max

t
bkt ‖bk‖1

≤
√

2t2AB

√
d ‖ai‖2

√
d ‖bk‖2

≤
√

2t2AB · d
= tAB

√
2d.

We are now able to present the proof of Lemma 5.1:

Proof of Lemma 5.1.

`(M, (A, y)) =

1− 1

n

∑
(B,y′)∈L

yy′KM(A,B)/γ


+

≤

∣∣∣∣∣∣y 1

n

∑
(B,y′)∈L

y′KM(A,B)/γ

∣∣∣∣∣∣ (B.20)

≤ 1

n

∑
(B,y′)∈L

∣∣y′KM(A,B)/γ
∣∣ (B.21)

≤ 1

nγ

∑
(B,y′)∈L

∣∣tr(MTATYABB)/tAB

∣∣
≤ 1

nγ

∑
(B,y′)∈L

1

tAB
‖M‖F

∥∥ATYABB
∥∥
F

≤ 1

nγ

∑
(B,y′)∈L

1

tAB

1√
λ
tAB

√
2d (B.22)

≤
√

2d

γ
√
λ
.
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Equation (B.20) comes from the 1-lipschitzness of the hinge loss. Inequality (B.21) is
obtained by applying triangle inequality. We obtain line (B.22) by applying Lemmas B.1
and B.2.

Proof of Lemma 5.2.

|`(M, (A, y))− `(M′, (A, y))|

=

∣∣∣∣∣∣
1− 1

n

∑
(B,y′)∈L

ll′KM(A,B)/γ


+

−

1− 1

n

∑
(B,y′)∈L

ll′KM′(A,B)/γ


+

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1n
∑

(B,y′)∈L
ll′KM(A,B)/γ − 1

n

∑
(B,y′)∈L

ll′KM′(A,B)/γ

∣∣∣∣∣∣ (B.23)

=
1

nγ

∣∣∣∣∣∣
∑

(B,y′)∈L
y′ (KM(A,B)−KM′(A,B))

∣∣∣∣∣∣
≤ 1

nγ

∑
(B,y′)∈L

|KM(A,B)−KM′(A,B)| (B.24)

=
1

nγ

∑
(B,y′)∈L

∣∣tr((M−M′)T ·AT ·YAB ·B)/tAB

∣∣
≤ 1

nγ

∑
(B,y′)∈L

1

tAB
||(M−M′)T ·AT ·YAB ·B)||1 (B.25)

≤ 1

nγ

∥∥M−M′
∥∥
F

∑
(B,y′)∈L

1

tAB

∥∥AT ·YAB ·B
∥∥
F (B.26)

≤
√

2d

γ

∥∥M−M′
∥∥
F . (B.27)

Inequality (B.23) comes from the 1-lipschitzness of the hinge loss. Inequality (B.24) is
obtained by applying triangle inequality. By using Lemma B.2 on line (B.26), we obtain
the lemma.

Proof of Lemma 5.3. This proof is similar to the one of Lemma 20 in Bousquet & Elisseeff
(2002). Consider the following notation for the objective function of SLTS (Equation (4.3)):

FS(M) := RS(M) + λ ‖M‖2F .

RS(·) is a convex function, thus for all t ∈ [0, 1], we have:

RSi(M− t∆M)−RSi(M) ≤ t(RSi(Mi)−RSi(M)), (B.28)

RSi(M
i + t∆M)−RSi(Mi) ≤ t(RSi(M)−RSi(Mi)). (B.29)

By summing Inequalities (B.28) and (B.29) we obtain the following:

RSi(M− t∆M)−RSi(M) +RSi(M
i + t∆M)−RSi(Mi) ≤ 0. (B.30)
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Since M and Mi are respectively the minimizers of FS(·) and FSi(·), we can write:

RS(M)−RS(M− t∆M) ≤ 0, (B.31)

RSi(M
i)−RSi(Mi − t∆M) ≤ 0. (B.32)

By summing Inequalities (B.31) and (B.32) we obtain:

FS(M)− FS(M− t∆M) + FSi(M
i)− FSi(Mi − t∆M) ≤ 0

RS(M)−RS(M− t∆M) + λ||M||2F − λ||M− t∆M||2F
+RSi(M

i)−RSi(Mi + t∆M) + λ||Mi||2F − λ||Mi + t∆M||2F ≤ 0 (B.33)

We can now sum Inequalities (B.30) and (B.33):

RS(M)−RS(M− t∆M) + λ||M||2F − λ||M− t∆M||2F
+RSi(M

i)−RSi(Mi + t∆M) + λ
∥∥Mi

∥∥2

F − λ
∥∥Mi + t∆M

∥∥2

F ≤ 0

From the previous inequality, we can write:

λ ‖M‖2F − λ ‖M− t∆M‖2F + λ
∥∥Mi

∥∥2

F − λ
∥∥Mi + t∆M

∥∥2

F ≤ Q, (B.34)

with
Q = RSi(M)−RS(M) +RS(M− t∆M)−RSi(M− t∆M).

We now need to bound the previous quantity Q:

Q ≤ 1

m

∣∣∣∣∣∣
∑

(A,y)∈Si
`(M, (A, y))−

∑
(A,y)∈S

`(M, (A, y)) +
∑

(A,y)∈S
`(M− t∆M, (A, y))

−
∑

(A,y)∈Si
`(M− t∆M, (A, y))

∣∣∣∣∣∣
=

1

m

∣∣`(M, (Ai, yi))− `(M, (A, y)) + `(M− t∆M, (A, y))− `(M− t∆M, (Ai, yi))
∣∣

(B.35)

≤ 1

m

(∣∣`(M, (Ai, yi))− `(M− t∆M, (Ai, yi))
∣∣+ |`(M− t∆M, (A, y))− `(M, (A, y))|

)
(B.36)

≤ 1

m
(l ‖M−M + t∆M‖F + l ‖M− t∆M−M‖F ) (B.37)

=
2lt

m
‖∆M‖F

On line (B.35) we keep the terms that differ in the previous sums. We get Inequality (B.36)
from triangle inequality, while (B.37) comes from the l-lipschitzness of the loss function
(Lemma 5.2). Combining the bound on Q with Equation (B.34) proves the lemma.
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Proof of Lemma 5.5.

ES [ES ] ≤ ES [E(A,y)[`(M, (A, y))]−RS(M)]

≤ ES,(A,y)

∣∣∣∣∣∣`(M, (A, y))− 1

m

∑
(Ai,yi)∈S

`(M, (Ai, yi))

∣∣∣∣∣∣


≤ ES,(A,y)

∣∣∣∣∣∣ 1

m

∑
(Ai,yi)

(`(M, (A, y))− `(M, (Ai, yi)))

∣∣∣∣∣∣


≤ ES,(A,y)

∣∣∣∣∣∣ 1

m

∑
(Ai,yi)

(
`(Mi, (Ai, yi))− `(M, (Ai, yi))

)∣∣∣∣∣∣
 (B.38)

≤ κ

m
. (B.39)

Inequality (B.38) comes from the fact that changing one point with another from the
same distribution does not affect the expected value, while Inequality (B.39) results from
applying triangle inequality and uniform stability (Theorem 5.4).

Proof of Lemma 5.6.

|ES − ESi |
=|RP (M)−RS(M)−RP (Mi) +RSi(M

i)|
=|RP (M)−RS(M)−RP (Mi) +RSi(M

i)−RS(Mi) +RS(Mi)|
≤|RP (M)−RP (Mi)|+ |RS(Mi)−RS(M)|+ |RSi(Mi)−RS(Mi)| (B.40)

≤E(A,y)[|`(M, (A, y))− `(Mi, (A, y))|] + |RS(Mi)−RS(M)|+ |RSi(Mi)−RS(Mi)|
(B.41)

≤ κ
m

+ |RS(Mi)−RS(M)|+ |RSi(Mi)−RS(Mi)| (B.42)

≤ κ
m

+
1

m

∑
(A,y)∈S

∣∣`(Mi, (A, y))− `(M, (A, y))
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+|RSi(Mi)−RS(Mi)|
≤ κ
m

+
κ

m
+ |RSi(Mi)−RS(Mi)| (B.43)

=
2κ

m
+

1

m
|`(Mi, (Ai, yi))− `(Mi, (A, y))| (B.44)

≤2κ

m
+

1

m
|`(Mi, (Ai, yi))| (B.45)

≤2κ

m
+

√
2d

mγ
√
λ

(B.46)

Inequalities (B.40) and (B.41) come from triangle inequality. Inequalities (B.42) and (B.43)
come from the uniform stability of our algorithm (Theorem 5.4). Line (B.44) comes from
the fact that S and Si differ only by example i. We can write Inequality (B.45) because
the loss is always positive, and we get line (B.46) by bounding the value of the loss function
(Lemma 5.1).
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Abstract
The notion of metric plays a key role in machine learning problems, such as classification, clustering and
ranking. Learning metrics from training data in order to make them adapted to the task at hand has
attracted a growing interest in the past years. This research field, known as metric learning, usually aims
at finding the best parameters for a given metric under some constraints from the data. The learned metric
is used in a machine learning algorithm in hopes of improving performance. Most of the metric learning
algorithms focus on learning the parameters of Mahalanobis distances for feature vectors. Current state of
the art methods scale well for datasets of significant size. On the other hand, the more complex topic of
multivariate time series has received only limited attention, despite the omnipresence of this type of data
in applications. An important part of the research on time series is based on the dynamic time warping
(DTW) computing the optimal alignment between two time series. The current state of metric learning
suffers from some significant limitations which we aim to address in this thesis. The most important one is
probably the lack of theoretical guarantees for the learned metric and its performance for classification.
The theory of (ε, γ, τ)-good similarity functions has been one of the first results relating the properties of a
similarity to its classification performance. A second limitation in metric learning comes from the fact that
most methods work with metrics that enforce distance properties, which are computationally expensive
and often not justified. In this thesis, we address these limitations through two main contributions. The
first one is a novel general framework for jointly learning a similarity function and a linear classifier. This
formulation is inspired from the (ε, γ, τ)-good theory, providing a link between the similarity and the
linear classifier. It is also convex for a broad range of similarity functions and regularizers. We derive
two equivalent generalization bounds through the frameworks of algorithmic robustness and uniform
convergence using the Rademacher complexity, proving the good theoretical properties of our framework.
Our second contribution is a method for learning similarity functions based on DTW for multivariate time
series classification. The formulation is convex and makes use of the (ε, γ, τ)-good framework for relating
the performance of the metric to that of its associated linear classifier. Using uniform stability arguments,
we prove the consistency of the learned similarity leading to the derivation of a generalization bound.

Résumé
La notion de métrique joue un rôle clef dans les problèmes d’apprentissage automatique tels que la
classification, le clustering et le ranking. L’apprentissage à partir de données de métriques adaptées à une
tâche spécifique a suscité un intérêt croissant ces dernières années. Ce domaine vise généralement à trouver
les meilleurs paramètres pour une métrique donnée sous certaines contraintes imposées par les données.
La métrique apprise est utilisée dans un algorithme d’apprentissage automatique dans le but d’améliorer
sa performance. La plupart des méthodes d’apprentissage de métriques optimisent les paramètres d’une
distance de Mahalanobis pour des vecteurs de features. Les méthodes actuelles de l’état de l’art arrivent
à traiter des jeux de données de tailles significatives. En revanche, le sujet plus complexe des séries
temporelles multivariées n’a reçu qu’une attention limitée, malgré l’omniprésence de ce type de données
dans les applications réelles. Une importante partie de la recherche sur les séries temporelles est basée
sur la dynamic time warping (DTW), qui détermine l’alignement optimal entre deux séries temporelles.
L’état actuel de l’apprentissage de métriques souffre de certaines limitations. La plus importante est
probablement le manque de garanties théoriques concernant la métrique apprise et sa performance pour
la classification. La théorie des fonctions de similarité (ε, γ, τ)-bonnes a été l’un des premiers résultats
liant les propriétés d’une similarité à celles du classifieur qui l’utilise. Une deuxième limitation vient du
fait que la plupart des méthodes imposent des propriétés de distance, qui sont coûteuses en terme de
calcul et souvent non justifiées. Dans cette thèse, nous abordons les limitations précédentes à travers deux
contributions principales. La première est un nouveau cadre général pour l’apprentissage conjoint d’une
fonction de similarité et d’un classifieur linéaire. Cette formulation est inspirée de la théorie de similarités
(ε, γ, τ)-bonnes, fournissant un lien entre la similarité et le classifieur linéaire. Elle est convexe pour une
large gamme de fonctions de similarité et de régulariseurs. Nous dérivons deux bornes de généralisation
équivalentes à travers les cadres de robustesse algorithmique et de convergence uniforme basée sur la
complexité de Rademacher, prouvant les propriétés théoriques de notre formulation. Notre deuxième
contribution est une méthode d’apprentissage de similarités basée sur DTW pour la classification de séries
temporelles multivariées. Le problème est convexe et utilise la théorie des fonctions (ε, γ, τ)-bonnes liant la
performance de la métrique à celle du classifieur linéaire associé. A l’aide de la stabilité uniforme, nous
prouvons la consistance de la similarité apprise conduisant à la dérivation d’une borne de généralisation.
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