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Metric Learning
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Metric Learning [Yan06, BHS13]

Aims at optimizing parameterized distances/similarities.

Leads to transformations of the input space before learning the
classifier.

Takes its constraints from side information of the input data.
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Mahalanobis Distance Learning

Find the positive semi-definite (PSD) matrix A ∈ Rd×d parameterizing a
Mahalanobis distance

dA(x, x′) =
√

(x− x′)TA(x− x′),

such that d2
A best satisfies the constraints.

Limitations

Satisfying A PSD is computationally expensive.

No generalization guarantees are provided.

Solution

Optimize similarity function K : X ×X → [−1, 1] instead of distances.

Consistency guarantees on K .

Generalization guarantees on the classifier using K .
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(ε, γ, τ)-Good Framework
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(ε, γ, τ)-Good Similarity Functions

Some of the first results on how the properties of the similarity function
influence its performance in linear classification.

Definition

[BBS08] K : X × X → [−1, 1] is a (ε, γ, τ)-good similarity function in
hinge loss for a learning problem P if there exists a random indicator
function R(x) defining a probabilistic set of ”landmarks” such that the
following conditions hold:

1 We have
E(x,y)∼P

[
[1− yg(x)/γ]+

]
≤ ε,

where g(x) = E(x′,y ′),R(x′) [y ′K (x, x′)|R(x′)].

2 Prx′(R(x′)) ≥ τ .
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Learning with (ε, γ, τ)-Good Similarity Functions

Theorem

[BBS08] Given K is (ε, γ, τ)-good, there exists a linear separator α in the
projection space that has error close to ε at margin γ.
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Learning the Classifier

Linear program

min
α

{ dl∑
i=1

[
1−

du∑
j=1

αjyiK (xi , xj)
]

+
:

du∑
j=1

|αj | ≤ 1/γ
}

Advantages:

Sparsity induced by γ;

Theoretical guarantees on α.

Main limitation:

No given method to find the suited similarity function.
I Recent work optimizing the goodness of K [BHS12].

Our contribution

Learn both α and K at the same time.

Take advantage of unlabeled data to improve goodness of K .
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Joint Similarity and Classifier Learning
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Joint Similarity and Classifier Learning

Objective

We want to jointly optimize α and KA in the (ε, γ, τ)-good framework.

Learning Setting

Labeled data: S = {zi = (xi , yi )}dl

Unlabeled data: {xj}du

Similarity function KA, parameterized by non PSD matrix A ∈ Rd×d

Instantaneous loss at point (xi , yi ):

`(A,α, zi = (xi , yi ))) =
[
1−

∑du
j=1 αjyiKA(xi , xj)

]
+
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Formulation

Joint Similarity Learning (JSL)

min
α,A

dl∑
i=1

[
1−

du∑
j=1

αjyiKA(xi , xj)
]

+
+ λ||A− R||

s.t.
du∑
j=1

|αj | ≤ 1/γ

Semi-supervised setting;

Averaged constraints;

Generic form of similarity and regularization;

Solved by alternating optimization steps over α and A.

11 / 27



Choice of Similarity and Regularization

Similarity Functions

K 1
A(x, x′) = xTAx′

K 2
A(x, x′) = 1− (x− x′)TA(x− x′)

Regularizer ||A− R||
L1 or L2 norm

Value of R ∈ Rd×d

I Identity matrix
I Empirical estimate of Kullback-Leibler divergence
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Theoretical Analysis

13 / 27



Theoretical Analysis

We want to bound the goodness in generalization of our learned
similarity and classifier:

E(A,α) = Ez∼Z`(A,α, z)

by the empirical goodness:

ES(A,α) =
1

dl

dl∑
i=1

`(A,α, zi ).

Theoretical frameworks

Uniform stability [BE02]

Algorithmic robustness [XM12]

VC dimension, Rademacher complexity and other similar.
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Rademacher Complexity

Rademacher average over F

R̂S(F) := Eσ

[
sup
f ∈F

1

n

n∑
i=1

σi f (zi )

]

Rademacher complexity

Rn(F) := ESR̂S(F), ∀n

where

F class of uniformly bounded functions;

{σi : i ∈ {1, . . . , n}} independent Rademacher random variables,
Pr(σi = 1) = Pr(σi = −1) = 1

2 .
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(β, c)-Admissibility

Definition

A pairwise similarity function KA : X × X → [−1, 1], parameterized by a
matrix A ∈ Rd×d , is said to be (β, c)-admissible if, for any matrix norm
|| · ||, there exist β, c ∈ R such that

∀x, x′ ∈ X , |KA(x, x′)| ≤ β + c · ||x′xT || · ||A||.

Examples

K 1
A(x, x′) = xTAx′ is (0, 1)-admissible;

K 2
A(x, x′) = 1− (x− x′)TA(x− x′) is (1, 4)-admissible.
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Bounding True Risk with Rademacher Complexity

Theorem (Generalization bound)

Let (AS ,αS) be the solution to JSL and KAS a (β, c)-admissible similarity
function. Then, for any 0 < δ < 1, with probability at least 1− δ, the
following holds:

true risk (β, c)-admissibility of KA X∗ = supx,x′∈X ||x′xT ||∗

E(AS ,αS)− ES(AS ,αS) ≤ 4Rdl

(
cd

γ

)
+

(
β + cX∗d

γ

)√
2 ln 1

δ

dl
.

empirical risk Rademacher complexity

Convergence rate in O
(

1√
dl

)
.
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Experiments
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Experimental Setup
Methods:

1 Linear classifiers

I Linear SVM with L2

regularization;

I BBS [BBS08];

I SLLC [BHS12];

I JSL;

2 Nearest neighbor approaches

I 3NN – euclidean distance;

I ITML [DKJ+07];

I LMNN and
LMNN-diag [WS08, WS09];

I LRML [HLC10],
semi-supervised setting.

Settings:

Small quantities of labeled data: 5, 10, 20 examples per class;

15 unlabeled examples, or the whole training set.
Datasets:

Balance Ionosphere Iris Liver Pima Sonar Wine
# Instances 625 351 150 345 768 208 178
# Dimensions 4 34 4 6 8 60 13
# Classes 3 2 3 2 2 2 3
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Accuracy Comparison
5 labeled points per class

20 / 27



Overall Accuracy Comparison

Method 5 pts./cl. 10 pts./cl. 20 pts./cl.
3NN 64.6±4.6 68.5±5.4 70.4±5.0
LMNN-diag 65.1±5.5 68.2±5.6 71.5±5.2
LMNN 69.4±5.9 70.9±5.3 73.2±5.2
ITML 75.8±4.2 76.5±4.5 76.3±4.8
SVM 76.4±4.9 76.2±7.0 77.7±6.4
BBS 77.2±7.3 77.0±6.2 77.3±6.3
SLLC 70.5±7.2 75.9±4.5 75.8±4.8
LRML 74.7±6.2 75.3±5.9 75.8±5.2
JSL-15 78.9±6.7 77.6±5.5 77.7±6.4
JSL-all 78.2±7.3 76.6±5.8 78.4±6.7
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Impact of the amout of labeled data

15 unlabeled landmarks

(a) Ionosphere (b) Pima
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Conclusion
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Conclusion

New semi-supervised metric learning framework;

Joint learning of a metric and a global separator;

General similarity function and regularizer;

Theoretical guarantees using Rademacher complexity.

Future work

Bigger datasets → online algorithm;

Landmarks selection heuristiques.
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Thank you!

Come see the poster!
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