Joint Semi-Supervised Similarity Learning for Linear Classification

<u>Maria-Irina Nicolae</u>^{1,2} Éric Gaussier² Amaury Habrard¹ Marc Sebban¹

¹Université Jean Monnet, Laboratoire Hubert Curien, France

²Université Grenoble Alpes, CNRS-LIG/AMA, France

ECML PKDD 2015

Metric Learning

Metric Learning [Yan06, BHS13]

- Aims at optimizing parameterized distances/similarities.
- Leads to transformations of the input space before learning the classifier.
- Takes its constraints from side information of the input data.

Mahalanobis Distance Learning

Find the positive semi-definite (PSD) matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ parameterizing a Mahalanobis distance

$$d_{\mathsf{A}}(\mathsf{x},\mathsf{x}') = \sqrt{(\mathsf{x}-\mathsf{x}')^{ op}\mathsf{A}(\mathsf{x}-\mathsf{x}')},$$

such that $d_{\mathbf{A}}^2$ best satisfies the constraints.

Limitations

- Satisfying A PSD is computationally expensive.
- No generalization guarantees are provided.

Solution

- Optimize similarity function $K : \mathcal{X} \times \mathcal{X} \rightarrow [-1, 1]$ instead of distances.
- Consistency guarantees on K.
- Generalization guarantees on the classifier using K.

(ϵ, γ, τ) -Good Framework

(ϵ, γ, τ) -Good Similarity Functions

Some of the first results on how the properties of the **similarity function** influence its performance in **linear classification**.

Definition

[BBS08] $K : \mathcal{X} \times \mathcal{X} \rightarrow [-1, 1]$ is a (ϵ, γ, τ) -good similarity function in hinge loss for a learning problem P if there exists a random indicator function $R(\mathbf{x})$ defining a probabilistic set of "landmarks" such that the following conditions hold:

We have

$$\mathbb{E}_{(\mathbf{x}, y) \sim P}\left[\left[1 - yg(\mathbf{x})/\gamma\right]_{+}\right] \leq \epsilon,$$

イロン イロン イヨン イヨン ヨー

6/27

where $g(\mathbf{x}) = \mathbb{E}_{(\mathbf{x}', \mathbf{y}'), R(\mathbf{x}')} [\mathbf{y}' \mathcal{K}(\mathbf{x}, \mathbf{x}') | R(\mathbf{x}')].$ **3** $\Pr_{\mathbf{x}'}(R(\mathbf{x}')) \ge \tau.$

Learning with (ϵ, γ, τ) -Good Similarity Functions

Theorem

[BBS08] Given K is (ϵ, γ, τ) -good, there exists a linear separator α in the projection space that has error close to ϵ at margin γ .

Learning the Classifier

Linear program

$$\min_{\boldsymbol{\alpha}} \Big\{ \sum_{i=1}^{d_l} \Big[1 - \sum_{j=1}^{d_u} \alpha_j y_i \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) \Big]_+ : \sum_{j=1}^{d_u} |\alpha_j| \le 1/\gamma \Big\}$$

Advantages:

- Sparsity induced by γ ;
- Theoretical guarantees on α .

Main limitation:

- No given method to find the suited similarity function.
 - Recent work optimizing the goodness of K [BHS12].

Our contribution

- Learn both α and K at the same time.
- Take advantage of unlabeled data to improve goodness of K.

Joint Similarity and Classifier Learning

Joint Similarity and Classifier Learning

Objective

We want to jointly optimize α and K_A in the (ϵ, γ, τ) -good framework.

Learning Setting

- Labeled data: $\mathcal{S} = \{\mathbf{z}_i = (\mathbf{x}_i, y_i)\}^{d_i}$
- Unlabeled data: $\{\mathbf{x}_j\}^{d_u}$
- Similarity function $K_{\mathbf{A}}$, parameterized by non PSD matrix $\mathbf{A} \in \mathbb{R}^{d imes d}$
- Instantaneous loss at point (\mathbf{x}_i, y_i) : $\ell(\mathbf{A}, \boldsymbol{\alpha}, \mathbf{z}_i = (\mathbf{x}_i, y_i))) = \left[1 - \sum_{j=1}^{d_u} \alpha_j y_i \mathcal{K}_{\mathbf{A}}(\mathbf{x}_i, \mathbf{x}_j)\right]_+$

Formulation

Joint Similarity Learning (JSL)

$$\begin{split} \min_{\alpha,\mathbf{A}} & \sum_{i=1}^{d_l} \left[1 - \sum_{j=1}^{d_u} \alpha_j y_i \mathcal{K}_{\mathbf{A}}(\mathbf{x}_i, \mathbf{x}_j) \right]_+ + \lambda ||\mathbf{A} - \mathbf{R}|| \\ \text{s.t.} & \sum_{j=1}^{d_u} |\alpha_j| \le 1/\gamma \end{split}$$

- Semi-supervised setting;
- Averaged constraints;
- Generic form of similarity and regularization;
- Solved by alternating optimization steps over α and **A**.

Choice of Similarity and Regularization

Similarity Functions

•
$$K^1_{\mathbf{A}}(\mathbf{x},\mathbf{x}') = \mathbf{x}^T \mathbf{A} \mathbf{x}'$$

•
$$K_{\mathbf{A}}^2(\mathbf{x}, \mathbf{x}') = 1 - (\mathbf{x} - \mathbf{x}')^T \mathbf{A}(\mathbf{x} - \mathbf{x}')$$

Regularizer $||\mathbf{A} - \mathbf{R}||$

- L_1 or L_2 norm
- Value of $\mathbf{R} \in \mathbb{R}^{d imes d}$
 - Identity matrix
 - Empirical estimate of Kullback-Leibler divergence

Theoretical Analysis

<ロト < 部 > < 言 > く 言 > こ の < C 13/27

Theoretical Analysis

We want to bound the **goodness in generalization** of our learned similarity and classifier:

$$\mathcal{E}(\mathsf{A}, oldsymbollpha) = \mathbb{E}_{\mathsf{z} \sim \mathcal{Z}} \ell(\mathsf{A}, oldsymbollpha, \mathsf{z})$$

by the empirical goodness:

$$\mathcal{E}_{\mathcal{S}}(\mathbf{A}, oldsymbol{lpha}) = rac{1}{d_l} \sum_{i=1}^{d_l} \ell(\mathbf{A}, oldsymbol{lpha}, \mathbf{z}_i).$$

Theoretical frameworks

- Uniform stability [BE02]
- Algorithmic robustness [XM12]
- VC dimension, Rademacher complexity and other similar.

Rademacher Complexity

Rademacher average over \mathcal{F}

$$\hat{\mathcal{R}}_{\mathcal{S}}(\mathcal{F}) := \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f(z_{i})
ight]$$

Rademacher complexity

$$\mathcal{R}_n(\mathcal{F}) := \mathbb{E}_{\mathcal{S}} \hat{\mathcal{R}}_{\mathcal{S}}(\mathcal{F}), \forall n$$

where

- \mathcal{F} class of uniformly bounded functions;
- { $\sigma_i : i \in \{1, ..., n\}$ } independent Rademacher random variables, $\Pr(\sigma_i = 1) = \Pr(\sigma_i = -1) = \frac{1}{2}$.

(β, c) -Admissibility

Definition

A pairwise similarity function $K_{\mathbf{A}} : \mathcal{X} \times \mathcal{X} \rightarrow [-1, 1]$, parameterized by a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$, is said to be (β, c) -admissible if, for any matrix norm $|| \cdot ||$, there exist $\beta, c \in \mathbb{R}$ such that

$$orall \mathbf{x}, \mathbf{x}' \in \mathcal{X}, |\mathcal{K}_{\mathbf{A}}(\mathbf{x}, \mathbf{x}')| \leq eta + c \cdot ||\mathbf{x}'\mathbf{x}^{\mathsf{T}}|| \cdot ||\mathbf{A}||.$$

Examples

- $K_{\mathbf{A}}^{1}(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{T} \mathbf{A} \mathbf{x}'$ is (0, 1)-admissible;
- $K^2_{\mathbf{A}}(\mathbf{x}, \mathbf{x}') = 1 (\mathbf{x} \mathbf{x}')^T \mathbf{A}(\mathbf{x} \mathbf{x}')$ is (1,4)-admissible.

Bounding True Risk with Rademacher Complexity

Theorem (Generalization bound)

Let $(\mathbf{A}_{S}, \alpha_{S})$ be the solution to JSL and $K_{\mathbf{A}_{S}}$ a (β, c) -admissible similarity function. Then, for any $0 < \delta < 1$, with probability at least $1 - \delta$, the following holds:

true risk (β, c) -admissibility of $K_{\mathsf{A}} = \sup_{\mathsf{x},\mathsf{x}' \in \mathcal{X}} ||\mathsf{x}'\mathsf{x}^{\mathsf{T}}||_{*}$ $\mathcal{E}(\mathsf{A}_{\mathcal{S}}, \alpha_{\mathcal{S}}) - \mathcal{E}_{\mathcal{S}}(\mathsf{A}_{\mathcal{S}}, \alpha_{\mathcal{S}}) \leq 4\mathcal{R}_{d_{l}} \left(\frac{cd}{\gamma}\right) + \left(\frac{\beta + cX_{*}d}{\gamma}\right) \sqrt{\frac{2\ln\frac{1}{\delta}}{d_{l}}}.$

empirical risk Rademacher complexity

• Convergence rate in $\mathcal{O}\left(\frac{1}{\sqrt{d_l}}\right)$.

Experiments

Experimental Setup

Methods:

- Linear classifiers
 - Linear SVM with L₂ regularization;
 - BBS [BBS08];
 - SLLC [BHS12];
 - ► JSL;

- Nearest neighbor approaches
 - 3NN euclidean distance;
 - ITML [DKJ⁺07];
 - LMNN and LMNN-diag [WS08, WS09];

 LRML [HLC10], semi-supervised setting.

Settings:

- Small quantities of labeled data: 5, 10, 20 examples per class;
- 15 unlabeled examples, or the whole training set.

Datasets:

	Balance	lonosphere	Iris	Liver	Pima	Sonar	Wine
# Instances	625	351	150	345	768	208	178
# Dimensions	4	34	4	6	8	60	13
# Classes	3	2	3	2	2	2	3

Accuracy Comparison

5 labeled points per class

2

Overall Accuracy Comparison

Method	5 pts./cl.	$10 \ \text{pts./cl.}$	$20 \ \text{pts./cl.}$
3NN	64.6±4.6	$68.5{\pm}5.4$	$70.4{\pm}5.0$
LMNN-diag	65.1±5.5	$68.2{\pm}5.6$	$71.5{\pm}5.2$
LMNN	69.4±5.9	$70.9{\pm}5.3$	$73.2{\pm}5.2$
ITML	75.8±4.2	$76.5{\pm}4.5$	$76.3{\pm}4.8$
SVM	76.4±4.9	$76.2{\pm}7.0$	$77.7{\pm}6.4$
BBS	77.2±7.3	$77.0{\pm}6.2$	$77.3{\pm}6.3$
SLLC	70.5±7.2	$75.9{\pm}4.5$	$75.8{\pm}4.8$
LRML	74.7±6.2	$75.3{\pm}5.9$	$75.8{\pm}5.2$
JSL-15	78.9 ±6.7	77.6 ±5.5	$77.7{\pm}6.4$
JSL-all	78.2±7.3	$76.6{\pm}5.8$	78.4 ±6.7

Impact of the amout of labeled data

15 unlabeled landmarks

Conclusion

Conclusion

- New semi-supervised metric learning framework;
- Joint learning of a metric and a global separator;
- General similarity function and regularizer;
- Theoretical guarantees using Rademacher complexity.

イロト 不得下 イヨト イヨト 二日

24 / 27

Future work

- Bigger datasets → online algorithm;
- Landmarks selection heuristiques.

Thank you! Come see the poster!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

References I

Acknowledgements

Funding for this project was provided by a grant from Région Rhône-Alpes.

Maria-Florina Balcan, Avrim Blum, and Nathan Srebro. Improved guarantees for learning via similarity functions.

In COLT, pages 287-298. Omnipress, 2008.

Olivier Bousquet and André Elisseeff. Stability and generalization.

JMLR, 2:499–526, March 2002.

Aurélien Bellet, Amaury Habrard, and Marc Sebban.

Similarity learning for provably accurate sparse linear classification. In *ICML*, pages 1871–1878, 2012.

Aurélien Bellet, Amaury Habrard, and Marc Sebban.

A survey on metric learning for feature vectors and structured data. Technical report, 2013.

Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S. Dhillon.

Information-theoretic metric learning. In *ICML*, pages 209–216, New York, NY, USA, 2007. ACM.

Steven C. H. Hoi, Wei Liu, and Shih-Fu Chang.

Semi-supervised distance metric learning for collaborative image retrieval and clustering. TOMCCAP, 6(3), 2010.

References II

K.Q. Weinberger and L.K. Saul.

Fast solvers and efficient implementations for distance metric learning. In *ICML*, pages 1160–1167. ACM, 2008.

K.Q. Weinberger and L.K. Saul.

Distance metric learning for large margin nearest neighbor classification. *JMLR*, 10:207–244, 2009.

Huan Xu and Shie Mannor.

Robustness and generalization. Machine Learning, 86(3):391-423, 2012.

Liu Yang.

Distance metric learning: A comprehensive survey, 2006.