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Abstract. The importance of metrics in machine learning has attracted
a growing interest for distance and similarity learning. We study here
this problem in the situation where few labeled data (and potentially
few unlabeled data as well) is available, a situation that arises in several
practical contexts. We also provide a complete theoretical analysis of the
proposed approach. It is indeed worth noting that the metric learning
research field lacks theoretical guarantees that can be expected on the
generalization capacity of the classifier associated to a learned metric.
The theoretical framework of (ε, γ, τ)-good similarity functions [1] has
been one of the first attempts to draw a link between the properties of
a similarity function and those of a linear classifier making use of it. In
this paper, we extend this theory to a method where the metric and
the separator are jointly learned in a semi-supervised way, setting that
has not been explored before, and provide a theoretical analysis of this
joint learning via Rademacher complexity. Experiments performed on
standard datasets show the benefits of our approach over state-of-the-
art methods.

Keywords: similarity learning, (ε, γ, τ)-good similarity, Rademacher com-
plexity.

1 Introduction

Many researchers have used the underlying geometry of the data to improve
classification algorithms, e.g. by learning Mahanalobis distances instead of the
standard Euclidean distance, thus paving the way for a new research area termed
metric learning [5,6]. If most of these studies have based their approaches on
distance learning [3,9,10,22,24], similarity learning has also attracted a growing
interest [2,12,16,20], the rationale being that the cosine similarity should in some
cases be preferred over the Euclidean distance. More recently, [1] have proposed
a complete framework to relate similarities with a classification algorithm mak-
ing use of them. This general framework, that can be applied to any bounded
similarity function (potentially derived from a distance), provides generaliza-
tion guarantees on a linear classifier learned from the similarity. Their algorithm



does not enforce the positive definiteness constraint of the similarity, like most
state-of-the-art methods. However, to enjoy such generalization guarantees, the
similarity function is assumed to be known beforehand and to satisfy (ε, γ, τ)-
goodness properties. Unfortunately, [1] do not provide any algorithm for learning
such similarities. In order to overcome these limitations, [4] have explored the
possibility of independently learning an (ε, γ, τ)-good similarity that they plug
into the initial algorithm [1] to learn the linear separator. Yet the similarity
learning step is done in a completely supervised way, while the setting in [1]
opens the door to the use of unlabeled data.

In this paper, we aim at better exploiting the semi-supervised setting un-
derlying the theoretical framework of [1], which is based on similarities between
labeled data and unlabeled reasonable points (roughly speaking, the reasonable
points play the same role as that of support vectors in SVMs). Furthermore,
and unlike [4], we propose here to jointly learn the metric and the classifier, so
that both the metric and the separator are learned in a semi-supervised way.
To our knowledge, this approach has not been explored before in metric learn-
ing. Enforcing (ε, γ, τ)-goodness allows us to preserve the theoretical guarantees
from [1] on the classifier in relation to the properties of the similarity. We use
the Rademacher complexity to derive new generalization bounds for the joint
optimization problem. Lastly, we provide an empirical study on seven datasets
and compare our method to different families of supervised and semi-supervised
learning algorithms.

The remainder of this paper is organized as follows: Section 2 reviews some
previous results in metric and similarity learning. Section 3 reminds the theory
of (ε, γ, τ)-good similarities and introduces our method that jointly learns the
metric and the linear classifier, followed in Section 4 by generalization guarantees
for our formulation. Finally, Section 5 presents an experimental study on various
standard datasets.

2 Related Work

We denote vectors by lower-case bold symbols (x) and matrices by upper-case
bold symbols (A). Consider the following learning problem: we are given access
to labeled examples z = (x, y) drawn from some unknown distribution P over
S = X ×Y, where X ⊆ Rd and Y = {−1, 1} are respectively the instance and the
output spaces. A pairwise similarity function over X is defined as K : X ×X →
[−1, 1], and the hinge loss as [c]+ = max(0, 1 − c). We denote the L1 norm by
|| · ||1, the L2 norm by || · ||2 and the Frobenius norm by || · ||F .

Metric learning aims at finding the parameters of a distance or similarity
function that best account for the underlying geometry of the data. This in-
formation is usually expressed as pair-based (x and x′ should be (dis)similar)
or triplet-based constraints (x should be more similar to x′ than to x′′). Typi-
cally, the learned metric takes the form of a matrix and is the result of solving
an optimization problem. The approaches that have received the most atten-
tion in this field involve learning a Mahalanobis distance, defined as dA(x,x′) =



√
(x− x′)TA(x− x′), in which the distance is parameterized by the symmetric

and positive semi-definite (PSD) matrix A ∈ Rd×d. One nice feature of this type
of approaches is its interpretability: the Mahalanobis distance implicitly corre-
sponds to computing the Euclidean distance after linearly projecting the data to
a different (possibly lower) feature space. The PSD constraint on A ensures dA
is a pseudo metric. Note that the Mahalanobis distance reduces to the Euclidean
distant when A is set to the identity matrix.

Mahalanobis distances were used for the first time in metric learning in [25].
In this study, they aim to learn a PSD matrix A as to maximize the sum of dis-
tances between dissimilar instances, while keeping the sum of distances between
similar instances small. Eigenvalue decomposition procedures are used to en-
sure that the learned matrix is PSD, which makes the computations intractable
for high-dimensional spaces. In this context, LMNN [23,24] is one of the most
widely-used Mahalanobis distance learning methods. The constraints they use
are pair- and triplet-based, derived from each instance’s nearest neighbors. The
optimization problem they solve is convex and has a special-purpose solver. The
algorithm works well in practice, but is sometimes prone to overfitting due to the
absence of regularization, especially when dealing with high dimensional data.
Another limitation is that enforcing the PSD constraint on A is computation-
ally expensive. One can partly get around this latter shortcoming by making use
of specific solvers or using information-theoretic approaches, such as ITML [9].
This work was the first one to use LogDet divergence for regularization, and
thus provides an easy and cheap way for ensuring that A is a PSD matrix. How-
ever, the learned metric A strongly depends on the initial value A0, which is an
important shortcoming, as A0 is handpicked.

The following metric learning methods use a semi-supervised setting, in order
to improve the performance through the use of unlabeled data. LRML [14,15]
learns Mahalanobis distances with manifold regularization using a Laplacian ma-
trix. Their approach is applied to image retrieval and image clustering. LRML
performs particularly well compared to fully supervised methods when side in-
formation is scarce. M-DML [28] uses a similar formulation to that of LRML,
with the distinction that the regularization term is a weighted sum using multi-
ple metrics, learned over auxiliary datasets. SERAPH [19] is a semi-supervised
information-theoretic approach that also learns a Mahalanobis distance. The
metric is optimized to maximize the entropy over labeled similar and dissimilar
pairs, and to minimize it over unlabeled data.

However, learning Mahalanobis distances faces two main limitations. The
first one is that enforcing the PSD and symmetry constraints on A, beyond
the cost it induces, often rules out natural similarity functions for the problem
at hand. Secondly, although one can experimentally notice that state-of-the-
art Mahalanobis distance learning methods give better accuracy than using the
Euclidean distance, no theoretical guarantees are provided to establish a link be-
tween the quality of the metric and the behavior of the learned classifier. In this
context, [21,20] propose to learn similarities with theoretical guarantees for the
kNN based algorithm making use of them, on the basis of perceptron algorithm



presented in [11]. The performance of the classifier obtained is competitive with
those of ITML and LMNN. More recently, [1] introduced a theory for learning
with so called (ε, γ, τ)-good similarity functions based on non PSD matrices.
This was the first stone to establish generalization guarantees for a linear classi-
fier that would be learned with such similarities. Their formulation is equivalent
to a relaxed L1-norm SVM [29]. The main limitation of this approach is however
that the similarity function K is predefined and [1] do not provide any learn-
ing algorithm to design (ε, γ, τ)-good similarities. This problem has been fixed
by [4] who optimize the (ε, γ, τ)-goodness of a bilinear similarity function under
Frobenius norm regularization. The learned metric is then used to build a good
global linear classifier. Moreover, their algorithm comes with a uniform stability
proof [8] which allows them to derive a bound on the generalization error of
the associated classifier. However, despite good results in practice, one limita-
tion of this framework is that it imposes to deal with strongly convex objective
functions.

Recently, [13] extended the theoretical results of [4]. Using the Rademacher
complexity (instead of the uniform stability) and Khinchin-type inequalities,
they derive generalization bounds for similarity learning formulations that are
regularized w.r.t. more general matrix-norms including the L1 and the mixed
L(2,1)-norms. Moreover, they show that such bounds for the learned similarities
can be used to upper bound the true risk of a linear SVM. The main distinction
between this approach and our work is that we propose a method that jointly
learns the metric and the linear separator at the same time. This allows us to
make use of the semi-supervised setting presented by [1] to learn well with only
a small amount of labeled data.

3 Joint Metric and Classifier Learning

In this section, we first briefly recall the (ε, γ, τ)-good framework [1] that we
are using, prior to presenting our semi-supervised framework for jointly learn-
ing a similarity function and a linear separator from data. The (ε, γ, τ)-good
framework is based on the following definition of a good similarity.

Definition 1. [1] K is a (ε, γ, τ)-good similarity function in hinge loss for a
learning problem P if there exists a random indicator function R(x) defining a
probabilistic set of ”reasonable points” such that the following conditions hold:

1. We have
E(x,y)∼P

[
[1− yg(x)/γ]+

]
≤ ε, (1)

where g(x) = E(x′,y′),R(x′) [y′K(x,x′)|R(x′)].
2. Prx′(R(x′)) ≥ τ .

The first condition can be interpreted as having a (1 − ε) proportion of
examples x on average 2γ more similar to random reasonable examples x′ of
their own label than to random reasonable examples x′ of the other label. It
also expresses the tolerated margin violations in an averaged way: this allows



for more flexibility than pair- or triplet-based constraints. The second condition
sets the minimum mass of reasonable points one must consider (greater than
τ). Notice that no constraint is imposed on the form of the similarity function.
Definition 1 is used to learn a linear separator:

Theorem 1. [1] Let K be an (ε, γ, τ)-good similarity function in hinge loss for a
learning problem P. For any ε1 > 0 and 0 < δ < γε1/4 let S = {x′1,x′2, . . . ,x′du}
be a sample of du = 2

τ

(
log(2/δ) + 16 log(2/δ)(ε1γ)2

)
landmarks drawn from P. Con-

sider the mapping φS : X → Rdu , φSi (x) = K(x,x′i), i ∈ {1, . . . , du}. With
probability 1 − δ over the random sample S, the induced distribution φS(P ) in
Rdu , has a separator achieving hinge loss at most ε+ ε1 at margin γ.

In other words, if K is (ε, γ, τ)-good according to Definition 1 and enough
points are available, there exists a linear separator α with error arbitrarily close
to ε in the space φS . The procedure for finding the separator involves two steps:
first using du potentially unlabeled examples as landmarks to construct the fea-
ture space, then using a new labeled set of size dl to estimate α ∈ Rdu . This is
done by solving the following optimization problem:

min
α

{ dl∑
i=1

[
1−

du∑
j=1

αjyiK(xi,xj)
]
+

:

du∑
j=1

|αj | ≤ 1/γ
}
. (2)

This problem can be solved efficiently by linear programming. Furthermore,
as it is L1-constrained, tuning the value of γ will produce a sparse solution.
Lastly, the associated classifier takes the following form:

y = sgn

du∑
j=1

αjK(x,xj). (3)

We now extend this framework to jointly learn the similarity and the sep-
arator in a semi-supervised way. Let S be a sample set of dl labeled exam-
ples (x, y) ∈ Z = X × {−1; +1}) and du unlabeled examples. Furthermore, let
KA(x,x′) be a generic (ε, γ, τ)-good similarity function, parameterized by the
matrix A ∈ Rd×d. We assume that KA(x,x′) ∈ [−1; +1] and that ||x||2 ≤ 1,
but all our developments and results can directly be extended to any bounded
similarities and datasets. Our goal here is to find the matrix A and the global
separator α ∈ Rdu that minimize the empirical loss (in our case, the hinge loss)
over a finite sample S, with some guarantees on the generalization error of the
associated classifier. To this end, we propose a generalization of Problem (2)
based on a joint optimization of the metric and the global separator:

min
α,A

dl∑
i=1

[
1−

du∑
j=1

αjyiKA(xi,xj)
]
+

+ λ||A−R|| (4)

s.t.

du∑
j=1

|αj | ≤ 1/γ (5)



A diagonal, |Akk| ≤ 1, 1 ≤ k ≤ d, (6)

where λ > 0 is a regularization parameter, and R ∈ Rd×d is a fixed diagonal
matrix such that ||R|| ≤ d. Here, the notation || · || refers to a generic matrix
norm, for instance L1 or L2 norms.

The novelty of this formulation is the joint optimization over A and α: by
solving Problem (4), we are learning the metric and the separator at the same
time. One of its significant advantages is that it extends the semi-supervised
setting from the separator learning step to the metric learning, and the two
problems are solved using the same data. This method can naturally be used in
situations where one has access to few labeled examples and some unlabeled ones:
the labeled examples are used in this case to select the unlabeled examples that
will serve to classify new points. Another important advantage of our technique,
coming from [1], is that the constraints on the pair of points do not need to be
satisfied entirely, as the loss is averaged on all the reasonable points. In other
words, this formulation is less restrictive than pair or triplet-based settings.
Constraint (5) takes into account the desired margin γ and is the same as in [1].
Constraint (6) ensures that the learned similarity is bounded in [−1; +1]. Note
that the diagonality constraint on A can be relaxed (in which case the bound
constraint becomes ||A|| ≤ 1 and R is no longer diagonal); we restrict ourselves
to diagonal matrices to simplify the presentation and to limit the number of
parameters to be learned.

The matrix R can be used to encode prior knowledge one has on the problem,
in a way similar to what is proposed in [9]. If the non parameterized version of
the similarity considered performs well, then a natural choice of R is the identity
matrix I, so that the learned matrix will preserve the good properties of the non
parameterized version (and will improve it through learning). Another form of
prior knowledge relates to the importance of each feature according to the classes
considered. Indeed, one may want to give more weight to features that are more
representative of one of the classes {−1; +1}. One way to capture this importance
is to compare the distributions of each feature on the two classes, e.g. through
Kullback–Leibler (KL) divergence. We assume here that each feature follows a
Gaussian distribution in each class, with means µ1 (class +1) and µ2 (class −1)
and standard deviations σ1 (class +1) and σ2 (class −1). The KL divergence is
expressed in that case as:

Dk
KL = log

(
σ1
σ2

)
+

1

2

(
σ2
1

σ2
2

− σ2
2

σ2
1

+
(µ2 − µ1)2

σ2
2

)
, 1 ≤ k ≤ d.

and the matrix R corresponds to diag(D1
KL, D

2
KL, · · · , Dd

KL).
Lastly, once A and α have been learned, the associated (binary) classifier

takes the form given in Eq. (3).

4 Generalization Bound for Joint Similarity Learning

In this section, we establish a generalization bound for our joint similarity learn-
ing formulation (4) under constraints (5) and (6). This theoretical analysis is



based on the Rademacher complexity and holds for any regularization parame-
ter λ > 0. Note that when λ = 0, we can also prove consistency results based on
the algorithmic robustness framework [26,27]. In such a case, the proof is similar
to the one in [18]. Before stating the generalization bound, we first introduce
some notations.

Definition 2. A pairwise similarity function KA : X ×X → [−1, 1], parameter-
ized by a matrix A ∈ Rd×d, is said to be (β, c)-admissible if, for any matrix norm
|| · ||, there exist β, c ∈ R such that ∀x,x′ ∈ X , |KA(x,x′)| ≤ β+c · ||x′xT || · ||A||.

Examples: Using some classical norm properties and the Frobenius inner prod-
uct, we can show that:

– The bilinear similarity K1
A(x,x′) = xTAx′ is (0, 1)-admissible, that is

|K1
A(x,x′)| ≤ ||x′xT || · ||A||;

– The similarity derived from the Mahalanobis distance K2
A(x,x′) = 1− (x−

x′)TA(x−x′) is (1, 4)-admissible, that is |K2
A(x,x′)| ≤ 1 + 4 · ||x′xT || · ||A||.

Note that we will make use of these two similarity functions K1
A and K2

A in our
experiments. For any B,A ∈ Rn×d and any matrix norm || · ||, its dual norm
|| · ||∗ is defined, for any B, by ||B||∗ = sup||A||≤1 Tr(BTA), where Tr(·) denotes

the trace of a matrix. Denote X∗ = supx,x′∈X ||x′xT ||∗.
Let us now rewrite the minimization problem (4) with a more generalized

notation of the loss function:

min
α,A

1

dl

dl∑
i=1

`(A,α, zi = (xi, yi)) + λ||A−R||, (7)

s.t.

du∑
j=1

|αj | ≤ 1/γ (8)

A diagonal, |Akk| ≤ 1, 1 ≤ k ≤ d, (9)

where `(A,α, zi = (xi, yi))) =
[
1−

∑du
j=1 αjyiKA(xi,xj)

]
+

is the instanta-

neous loss estimated at point (xi, yi). Note that from constraints (8) and (9), we

deduce that ||A|| < d. Let ES(A,α) = 1
dl

∑dl
i=1 `(A,α, zi) be the overall empir-

ical loss over the training set S, and let E(A,α) = Ez∼Z`(A,α, z) be the true
loss w.r.t. the unknown distribution Z. The target of generalization analysis for
joint similarity learning is to bound the difference E(A,α)− ES(A,α).

Our generalization bound is based on the Rademacher complexity which can
be seen as an alternative notion of the complexity of a function class and has
the particularity to be (unlike the VC-dimension) data-dependent.

Definition 3. Let F be a class of uniformly bounded functions. For every integer
n, we call

Rn(F) := ESEσ

[
sup
f∈F

1

n

n∑
i=1

σif(zi)

]



the Rademacher average over F , where S = {zi : i ∈ {1, . . . , n}} are independent
random variables distributed according to some probability measure and {σi : i ∈
{1, . . . , n}} are independent Rademacher random variables, that is, Pr(σi = 1) =
Pr(σi = −1) = 1

2 .

The Rademacher average w.r.t. the dual matrix norm is then defined as:

Rdl := ES,σ

[
sup
x̃∈X

∣∣∣∣∣
∣∣∣∣∣ 1

dl

dl∑
i=1

σiyixix̃
T

∣∣∣∣∣
∣∣∣∣∣
∗

]

We can now state our generalization bound.

Theorem 2. Let (AS ,αS) be the solution to the joint problem (7) and KAS a
(β, c)-admissible similarity function. Then, for any 0 < δ < 1, with probability
at least 1− δ, the following holds:

E(AS ,αS)− ES(AS ,αS) ≤ 4Rdl
(
cd

γ

)
+

(
β + cX∗d

γ

)√
2 ln 1

δ

dl
.

Theorem 2 proves that learning A and α in a joint manner from a training
set minimizes the generalization error, as the latter is bounded by the empirical
error of our joint regularized formulation. Its proof makes use of the Rademacher
symmetrization theorem and contraction property (Theorem 3 and Lemma 1):

Theorem 3. [7] Let Rn(F) be the Rademacher average over F defined as pre-
viously. We have:

E

[
sup
f∈F

(
Ef(S)− 1

n

n∑
i=1

f(zi)

)]
≤ 2Rn(F).

Lemma 1. [17] Let F be a class of uniformly bounded real-valued functions on
(Ω,µ) and m ∈ N. If for each i ∈ {1, . . . ,m}, φi : R→ R is a function having a
Lipschitz constant ci, then for any {xi}i∈Nm ,

Eε

(
sup
f∈F

∑
i∈Nm

εiφi(f(xi))

)
≤ 2Eε

(
sup
f∈F

∑
i∈Nm

ciεif(xi)

)
.

Proof (Theorem 2).
Let ES denote the expectation with respect to sample S. Observe that

ES(AS ,αS) − E(AS ,αS) ≤ supA,α [ES(A,α)− E(A,α)]. Also, for any S =

(z1, . . . , zk, . . . , zdl) and S̃ = (z1, . . . , z̃k, . . . , zdl), 1 ≤ k ≤ dl:∣∣∣∣sup
A,α

[ES(A,α)− E(A,α)]− sup
A,α

[ES̃(A,α)− E(A,α)]

∣∣∣∣
≤ sup

A,α
|ES(A,α)− ES̃(A,α)|



=
1

dl
sup
A,α

∣∣∣∣∣∣
∑

z=(x,y)∈S

1−
du∑
j=1

αjyKA(x,xj)


+

−
∑

z̃=(x̃,ỹ)∈S̃

1−
du∑
j=1

αj ỹKA(x̃,xj)


+

∣∣∣∣∣∣
=

1

dl
sup
A,α

∣∣∣∣∣∣
1−

du∑
j=1

αjykKA(xk,xj)


+

−

1−
du∑
j=1

αj ỹkKA(x̃k,xj)


+

∣∣∣∣∣∣
=

1

dl
sup
A,α

∣∣∣∣∣∣
du∑
j=1

αj ỹkKA(x̃k,xj)−
du∑
j=1

αjykKA(xk,xj)

∣∣∣∣∣∣ (10)

≤ 2

dl
sup
A,α

∣∣∣∣∣∣
du∑
j=1

αjy
max
k KA(xmaxk ,xj)

∣∣∣∣∣∣ where zmaxk = arg max
z=(x,y)∈{zk,z̃k}

yKA(x,xj)

≤ 2

dl
sup
A,α


du∑
j=1

|αj | · |ymaxk | · |KA(xmaxk ,xj)|


≤ 2

dl

(
β + cX∗d

γ

)
(11)

Inequality (10) comes from the 1-lipschitzness of the hinge loss; Inequality (11)
comes from Constraint (8), ||A|| ≤ d and the (β, c)-admissibility of KA. Ap-
plying McDiarmid’s inequality to the term supA,α [ES(A,α)− E(A,α)], with
probability 1− δ, we have:

sup
A,α

[ES(A,α)− E(A,α)] ≤ ES sup
A,α

[ES(A,α)− E(A,α)]+

(
β + cX∗d

γ

)√
2 ln 1

δ

dl
.

In order to bound the gap between the true loss and the empirical loss, we now
need to bound the expectation term of the right hand side of the above equation.

ES sup
A,α

[ES(A,α)− E(A,α)]

=ES sup
A,α

 1

dl

dl∑
i=1

1−
du∑
j=1

αjyiKA(xi,xj)


+

− E(A,α)


≤2ES,σ sup

A,α

 1

dl

dl∑
i=1

σi

1−
du∑
j=1

αjyiKA(xi,xj)


+

 (12)

≤4ES,σ sup
A,α

∣∣∣∣∣∣ 1

dl

dl∑
i=1

σiyi

du∑
j=1

αjKA(xi,xj)

∣∣∣∣∣∣ (13)

≤4

(
cd

γ

)
ES,σ sup

x̃

∣∣∣∣∣
∣∣∣∣∣ 1

dl

dl∑
i=1

σiyixix̃
T

∣∣∣∣∣
∣∣∣∣∣
∗

= 4Rdl
(
cd

γ

)
. (14)



We obtain Inequality (12) by applying Theorem 3, while Inequality (13) comes
from the use of Lemma 1. The Inequality on line (14) makes use of the (β, c)-
admissibility of the similarity function KA (Definition 2). Combining Inequali-
ties (11) and (14) completes the proof of the theorem. ut

After proving the generalization bound of our joint similarity approach, we
now move to the experimental validation of the approach proposed.

5 Experiments

The state of the art in metric learning is dominated by algorithms designed
to work in a purely supervised setting. Furthermore, most of them optimize a
metric adapted to kNN classification (e.g. LMNN, ITML), while our work is
designed for finding a global linear separator. For these reasons, it is difficult
to propose a totally fair comparative study. In this section, we first evaluate
the effectiveness of problem (4) with constraints (5) and (6) (JSL, for Joint
Similarity Learning) with different settings. Secondly, we extensively compare
it with state-of-the-art algorithms from different categories (supervised, kNN-
oriented). Lastly, we study the impact of the quantity of available labeled data
on our method. We conduct the experimental study on 7 classic datasets taken
from the UCI Machine Learning Repository3, both binary and multi-class. Their
characteristics are presented in Table 1. These datasets are widely used for metric
learning evaluation.

Table 1: Properties of the datasets used in the experimental study.

Balance Ionosphere Iris Liver Pima Sonar Wine

# Instances 625 351 150 345 768 208 178
# Dimensions 4 34 4 6 8 60 13
# Classes 3 2 3 2 2 2 3

5.1 Experimental setting

In order to provide a comparison as complete as possible, we compare two main
families of approaches4:

1. Linear classifiers: in this family, we consider the following methods:
– BBS, corresponding to Problem (2) and discussed above;
– SLLC [4], an extension of BBS in which a similarity is learned prior to

be used in the BBS framework;

3 http://archive.ics.uci.edu/ml/.
4 For all the methods, we used the code provided by the authors.



– JSL, the joint learning framework proposed in this study;

– Linear SVM with L2 regularization, which is the standard approach for
linear classification;

2. Nearest neighbor approaches: in this family, we consider the methods:

– Standard 3-nearest neighbor classifier (3NN) based on the Euclidean
distance;

– ITML [9], which learns a Mahalanobis distance that is used here in 3NN
classification;

– LMNN with a full matrix and LMNN with a diagonal matrix (LMNN-
diag) [23,24], also learning a Mahalanobis distance used here in 3NN
classification;

– LRML [14,15]; LRML also learns a Mahalanobis distance used in 3NN
classifier, but in a semi-supervised setting. This method is thus the
”most” comparable to JSL (even though one is learning a linear sep-
arator and the other only a distance).

All classifiers are used in their binary version, in a one-vs-all setting when the
number of classes is greater than two. BBS, SLLC and JSL rely on the same
classifier from Eq. (3), even though learned in different ways. We solve BBS
and JSL using projected gradient descent. In JSL, we rely on an alternating
optimization that consists in fixing A (resp. α) and optimizing for α (resp. A),
then changing the variable, until convergence.

Data processing and parameter settings All features are centered around
zero and scaled to ensure ||x||2 ≤ 1, as this constraint is necessary for some of
the algorithms. We randomly choose 15% of the data for validation purposes,
and another 15% as a test set. The training set and the unlabeled data are cho-
sen from the remaining 70% of examples not employed in the previous sets. In
order to illustrate the classification using a restricted quantity of labeled data,
the number of labeled points is limited to 5, 10 or 20 examples per class, as this
is usually a reasonable minimum amount of annotation to rely on. The number
of landmarks is either set to 15 points or to all the points in the training set (in
which case their label is not taken into account). These two settings correspond
to two practical scenarios: one in which a relatively small amount of unlabeled
data is available, and one in which a large amount of unlabeled data is available.
When only 15 unlabeled points are considered, they are chosen from the training
set as the nearest neighbor of the 15 centroids obtained by applying k-means++
clustering with k = 15. All of the experimental results are averaged over 10
runs, for which we compute a 95% confidence interval. We tune the following
parameters by cross-validation: γ, λ ∈ {10−4, . . . , 10−1} for BBS and JSL (λ only
for the second), λITML ∈ {10−4, . . . , 104}, choosing the value yielding the best
accuracy. For SLLC, we tune γ, β ∈ {10−7, . . . , 10−2}, λ ∈ {10−3, . . . , 102}, as
done by the authors, while for LRML we consider γs, γd, γi ∈ {10−2, . . . , 102}.
For LMNN, we set µ = 0.5, as done in [24].



5.2 Experimental results

Analysis of JSL We first study here the behavior of the proposed joint learning
framework w.r.t. different families of similarities and regularization functions
(choice of R and ||·||). In particular, we consider two types of similarity measures:
bilinear (cosine-like) similarities of the form K1

A(x,x′) = xTAx′ and similarities
derived from the Mahalanobis distance K2

A(x,x′) = 1 − (x − x′)TA(x − x′).
For the regularization term, R is either set to the identity matrix (JSL-I), or
to the approximation of the Kullback–Leibler divergence (JSL-KL) discussed in
Section 3. As mentioned above, these two settings correspond to different prior
knowledge one can have on the problem. In both cases, we consider L1 and L2

regularization norms. We thus obtain 8 settings, that we compare in the situation
where few labeled points are available (5 points per class), using a small amount
(15 instances) of unlabeled data or a large amount (the whole training set) of
unlabeled data. The results of the comparisons are reported in Tables 2 and 3.

As one can note from Table 2, when only 15 points are used as landmarks, K2
A

obtains better results in almost all of the cases, the difference being more impor-
tant on Iris, Pima and Sonar. The noticeable exception to this better behavior
of K2

A is Wine, for which cosine-like similarities outperform Mahalanobis-based
similarities by more than 10 points. A similar result was also presented in [21].
The difference between the use of the L1 or L2 norms is not as marked, and there
is no strong preference for one or the other, even though the L2 norm leads to
slightly better results in average than the L1 norm. Regarding the regularization
matrix R, again, the difference is not strongly marked, except maybe on Sonar.
In average, regularizing through the Kullback-Leibler divergence leads to slightly
better results than regularizing through the identity matrix.

When all points are used as landmarks (Table 3), similar conclusions can be
drawn regarding the similarity functions and the norms used. However, in that
case, the regularization based on the identity matrix yields better results than
the one based on the KL divergence. It is important to note also that the overall
results are in general lower than the ones obtained when only 15 points are used
as landmarks. We attribute this effect to the fact that one needs to learn more
parameters (via α), whereas the amount of available labeled data is the same.

From the above analysis, we focus now on two JSL based methods: JSL-
15 with K2

A, L2 norm and R =KL when 15 points are used as landmarks, and
JSL-all with K2

A, L2 norm and R = I when all the points are used as landmarks.
Comparison of the different methods We now study the performance

of our method, compared to state-of-the-art algorithms. For this, we consider
JSL-15 and JSL-all with 5, 10, respectively 20 labeled examples per class. As
our methods are tested using the similarity based on the Mahalanobis distance,
we use the euclidean distance for BBS to ensure fairness.

Figure 1 presents the average accuracy per dataset obtained with 5 labeled
points per class. In this setting, JSL outperforms the other algorithms on 5
out of 7 datasets and has similar performances on one other. The exception is
the Wine dataset, where none of the JSL settings yields competitive results. As
stated before, this is easily explained by the fact cosine-similarities are more



Table 2: Average accuracy (%) with confidence interval at 95%, 5 labeled points
per class, 15 unlabeled landmarks.

Sim. Reg. Balance Ionosphere Iris Liver Pima Sonar Wine

I-L1 85.2±3.0 85.6±2.4 76.8±3.2 63.3±6.2 71.0±4.1 72.9±3.6 91.9±4.2
K1

A I-L2 85.1±2.9 85.6±2.6 76.8±3.2 63.1±6.3 71.0±4.0 73.2±3.8 91.2±4.5
KL-L1 84.9±2.9 85.0±2.6 77.3±2.7 63.9±5.5 71.0±4.0 72.9±3.6 90.8±4.7
KL-L2 85.2±3.0 85.8±3.3 76.8±3.2 62.9±6.4 71.3±4.3 74.2±3.8 90.0±5.4

I-L1 87.2±2.9 87.7±2.6 78.6±4.6 64.7±5.6 75.1±3.5 73.9±5.7 80.8±9.5
K2

A I-L2 86.8±3.0 87.7±2.8 75.9±5.7 64.3±5.4 75.6±3.6 74.8±5.8 80.8±8.6
KL-L1 87.2±2.9 87.3±2.4 78.6±4.6 62.9±5.6 75.0±3.7 75.5±6.2 79.6±11.8
KL-L2 87.1±2.7 85.8±3.3 79.1±5.4 64.9±5.9 75.6±3.4 77.1±5.2 79.6±9.7

Table 3: Average accuracy (%) with confidence interval at 95%, all points used
as landmarks.

Sim. Reg. Balance Ionosphere Iris Liver Pima Sonar Wine

I-L1 85.8±2.9 88.8±2.5 74.5±3.1 65.5±4.5 71.4±3.8 70.3±6.6 85.8±5.0
K1

A I-L2 85.8±2.9 87.7±2.7 74.5±3.5 64.7±5.5 71.7±4.1 68.7±6.7 84.6±5.5
KL-L1 85.6±3.1 87.9±3.4 75.0±3.5 65.3±4.9 71.6±4.2 70.3±6.8 85.4±5.3
KL-L2 85.1±3.1 88.5±3.7 75.9±3.4 65.1±4.8 72.1±4.2 71.9±6.7 86.5±6.0

I-L1 85.9±2.3 90.4±2.2 71.8±6.1 67.3±3.5 73.1±3.5 72.9±4.2 81.5±8.4
K2

A I-L2 86.2±2.5 90.6±2.2 73.2±6.6 68.6±3.3 73.3±3.2 73.2±4.2 82.7±9.0
KL-L1 85.8±2.6 89.4±2.0 72.7±5.5 67.5±3.8 73.8±3.5 71.0±4.1 80.0±7.4
KL-L2 85.9±2.4 89.6±2.2 74.5±6.2 68.4±3.6 73.1±3.8 72.3±4.8 80.0±11.5

adapted for this dataset. Even though JSL-15 and JSL-all perform the same
when averaged over all datasets, the difference between them is marked on some
datasets: JSL-15 is considerably better on Iris and Sonar, while JSL-all signifi-
cantly outperforms JSL-15 on Ionosphere and Liver. Averaged over all datasets
(Table 4), JSL obtains the best performance in all configurations with a limited
amount of labeled data, which is particularly the setting that our method is
designed for. The values in bold are significantly better than the rest of their
respective columns, confirmed by a one-sided Student t-test for paired samples
with a significance level of 5%.

Impact of the amount of labeled data As an illustration of the methods’
behavior when the level of supervision varies, Figure 2 presents the accuracies
on two representative datasets, Ionosphere and Pima, with an increasing number
of labeled examples. In both cases, the best results are obtained by JSL (and
more precisely JSL-15) when less than 50% of the training set is used. This
is in agreement with the results reported in Table 4. The results of JSL are
furthermore comparable only to BBS for the Pima dataset. Lastly, the accuracy
of JSL improves slightly when adding more labeled data, and the results on the
whole training set are competitive w.r.t. the other algorithms.



Fig. 1: Average accuracy (%) with confidence interval at 95%, 5 labeled points
per class, 15 unlabeled landmarks.

6 Conclusion

In this paper, we have studied the problem of learning similarities in the situation
where few labeled (and potentially few unlabeled) data is available. To do so,
we have developed a semi-supervised framework, extending the (ε, γ, τ)-good
of [1], in which the similarity function and the classifier are learned at the same
time. To our knowledge, this is the first time that such a framework is provided.
The joint learning of the similarity and the classifier enables one to benefit
from unlabeled data for both the similarity and the classifier. We have also
showed that the proposed method was theoretically well-founded as we derived a
Rademacher-based bound on the generalization error of the learned parameters.
Lastly, the experiments we have conducted on standard metric learning datasets
show that our approach is indeed well suited for learning with few labeled data,
and outperforms state-of-the-art metric learning approaches in that situation.

Acknowledgements: Funding for this project was provided by a grant from
Région Rhône-Alpes.



Table 4: Average accuracy (%) over all datasets with confidence interval at 95%.

Method 5 pts./cl. 10 pts./cl. 20 pts./cl.

3NN 64.6±4.6 68.5±5.4 70.4±5.0
LMNN-diag 65.1±5.5 68.2±5.6 71.5±5.2
LMNN 69.4±5.9 70.9±5.3 73.2±5.2
ITML 75.8±4.2 76.5±4.5 76.3±4.8
SVM 76.4±4.9 76.2±7.0 77.7±6.4
BBS 77.2±7.3 77.0±6.2 77.3±6.3
SLLC 70.5±7.2 75.9±4.5 75.8±4.8
LRML 74.7±6.2 75.3±5.9 75.8±5.2
JSL-15 78.9±6.7 77.6±5.5 77.7±6.4
JSL-all 78.2±7.3 76.6±5.8 78.4±6.7

(a) Ionosphere (b) Pima

Fig. 2: Average accuracy w.r.t. the number of labeled points with 15 landmarks.
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